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ABSTRACT 

The biochemical and physiological functions of a large proportion of the approximately 

27,000 protein-encoding genes in the Arabidopsis genome is experimentally undetermined 

using sequence homology techniques alone. This thesis presents a set of bioinformatics 

resources including a software platform for data visualization and data analysis that address the 

key issues in incorporating the metabolomics data for functional genomics studies. 

Multiple mass spectrometry based metabolomics platforms are combined together to get 

better coverage of the metabolome. Different strategies for integrating the metabolomics 

abundance data from multiple platforms are compared to find the ideal method for biomarker 

discovery. A new method of putatively identifying unknown metabolites by first order partial 

correlation networks is proposed that uses the existing data to incorporate structurally unknown 

metabolites. A comprehensive study of 70 single gene knock mutants vs. wild type samples is 

performed using Random Forest machine learning algorithm and a biomarker database for each 

of the 70 mutations is built with the key metabolites including the putative identifications of 

unknown metabolites.  

A proof-of-concept analysis on the  oxoprolinase (oxp1) and gamma-glutamyl 

transpeptidase (ggt1 and ggt2) single gene knock-out mutants in the glutathione degradation 

(GSH) pathway of the Arabidopsis confirms the known biology that OXP1 is responsible for 

conversion of 5-oxoproline (5-OP) to glutamic acid. In addition, ggt1/ggt2 analysis supports the 

hypothesis that the GGT genes may not be major contributors for the 5-OP production. Also, the 

lack of biochemical changes in ggt2 mutation supports the previous studies of its low level 

expression in leaf tissues.  

The metabolomics database, the biomarker database and the data mining tools are 

implemented in a web based software suite at www.plantmetabolomics.org. 

http://www.plantmetabolomics.org/
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CHAPTER 1. INTRODUCTION 

Metabolomics is an important functional genomics tool and can be used in finding the functions 

of genes where sequence genomics techniques alone are not adequate. However, the 

bioinformatics resources and methods for the metabolomics are still very new and under 

developed. One of the biggest challenges in metabolomics is to integrate multiple platforms as 

no single analytical technique or platform can cover the whole metabolome of an organism and 

to understand the role of structurally unknown metabolites which constitute a major part of the 

detected metabolites in any large scale metabolomics study.  

This thesis communicates my contribution to the field of bioinformatics in metabolomics area. 

This includes database and tool development to integrate multiple metabolomics platforms and 

development of new techniques for the analysis of the metabolomics data. The main chapters of 

this thesis are published, or to be submitted manuscripts in peer reviewed journals in plant 

science and bioinformatics area and discuss my solutions for the above stated problems in 

metabolomics. The thesis is organized as follows – 

Thesis Organization  

• Chapter 1: Introduction and the contribution of thesis in Metabolomics area. 

• Chapter 2: General Introduction: Discusses the general background of the available 

metabolomics technologies and bioinformatics resources.  

• Chapter 3: Plantmetabolomics.org A database for plant metabolomics 

experiments: Discusses a web based database, PM (www.plantmetabolomics.org) that 

combines 11 different analytical platforms to detect ~1400 metabolites in 140 single 

gene knock out mutants of Arabidopsis.  A researcher can use this database and 

visualization tools to compare biochemical changes due to a mutation to form hypothesis 

http://www.plantmetabolomics.org/
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about the function of a gene of interest. This chapter was published in Plant Physiology 

in 2010. 

• Chapter 4:  Plantmetabolomics.org: Mass Spectrometry based Arabidopsis 

metabolomics database and tools- Update: Discusses new multivariate and machine 

learning data analysis and data visualization tools that were incorporated in PM 

database in 2011 along with new morphological data.  This database along with the new 

data mining and visualization tools provides a hypothesis building platform for the 

researchers that are interested in functions of any of the genes contained in the 

database. This work has been published in Nucleic Acid Research 2012 database issue. 

• Chapter 5: Data analysis pipeline in functional genomics using metabolomics and 

machine learning: Discusses the methods and data analysis pipeline to analyze and 

integrate metabolomics data from multiple platforms for biomarker discovery. These 

methods are tested on 3 genes of an Arabidopsis pathway to confirm the known biology 

and provide new knowledge. This chapter is based on a manuscript that is to be 

submitted to Plant Physiology in 2011. 

• Chapter 6: Partial correlation networks to putatively identify unknown metabolites 

in non-targeted metabolomics: Discusses a comprehensive study on 70 mutation lines 

of Arabidopsis using machine learning and gas chromatography mass spectrometry 

based metabolomics. A biomarker database is created for the key metabolites for the 

classification of mutant vs.  wild type samples for all of these mutation lines.  First order 

partial correlation networks built across the mutation are used in putatively identifying the 

potential biomarkers of unknown structures from a machine learning method. This 

provides a cost effective way of incorporating the unknown metabolites to gain biological 

insight. This chapter is based on a manuscript that is to be submitted to Plant Methods in 

2011. 
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• Chapter 7: Conclusions: Conclusions and significance of this work.  
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CHAPTER 2. METABOLOMICS: GENERAL BACKGROUND 

What is Metabolomics? 

Metabolic analysis is the study of small molecules (molecular weight <1,000 Da) in a biological 

system (Fiehn O. et al. 2000; Hall R. et al. 2002). The biochemical state of an organism is the 

result of interaction between its genotype (G), its environmental (E), and its homeostasis 

mechanisms. Living cells respond to environment or genetic perturbation and this response can 

be measured by quantifying the change in concentration of metabolites. Metabolic information 

reflects the response of a plant cell to its environment or genetic perturbation more accurately 

than the sequence or the gene expression analysis as it is the end product of a gene’s 

expression .Metabolomics can be a useful tool in assessing the plant’s physiology, growth 

characteristics, and stress response (Sumner L. et al. 2003).  

Some Examples of Usage of Metabolomics 

Metabolomics is increasingly used in determining and improving quality traits such as the color, 

taste and flavor of the plants because these traits are related to metabolic composition. For 

example, metabolomics analysis was done in tomato using domesticated and undomesticated 

species to discover the primary and secondary metabolites that contribute to flavor and color 

(Schauer N. et al. 2005). A combination of genomic analysis with metabolomic profiling 

identified novel genes involved in the fragrance production in rose petals (Guterman I.et al. 

2002). Metabolic composition analysis was performed on the samples from genetically modified 

and conventional potato tubers to find out if GM potatoes had any undesired or potentially 

harmful metabolites apart from the targeted changes (Catchpole G. et al. 2005).  Metabolic 

profiling has also been  used to explore the degradation process of linoleic acid in stored apples 

(Beuerle T. et al. 1999).  
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Metabolomics as a Functional Genomics Tool 

There are about 27,000 protein-encoding genes in the Arabidopsis genome whose functions are 

experimentally undetermined.  The functions of these genes are either completely undermined 

using sequence homology or can only be classified in the broad functional classes. The first 

category of unknown genes consists of 9000 genes that share no sequence homology of any 

genes in the sequence database or share sequence homology to genes of unknown functions. 

The second category consists of approximately 15000 genes. This thesis is part of a multi-

disciplinary experimental system that has been developed to generate and evaluate 

metabolomics data as a tool for deciphering gene function in Arabidopsis by knocking down a 

single gene and comparing its metabolomics concentration data with the wild type samples 

while keeping the environment stable. Since the metabolome reflects the final outcome of a 

genes expression at the molecular level, the comparison of single gene knock outs with the wild 

type samples may give clues to the functions of a gene. This thesis focuses on the 

bioinformatics solutions and computational infrastructure development for the same. The 

following paragraphs introduce the existing technologies and practices along with the 

challenges in the metabolomics area. The later chapters discuss our proposed solutions to 

some of these challenges. 

Types of Metabolic Analyses 

Metabolomic analyses can be divided into targeted and non-targeted analyses. Targeted 

analysis aims at a selected group of metabolites or pathways and provides precise 

quantification of those metabolites in a sample. This method requires that the structure of the 

targeted metabolites is known and that the metabolites are available in purified form before the 

analysis. Targeted methods cannot detect any novel metabolites in a sample (Aharoni A. et al. 

2002).  
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Non-targeted analyses can be further divided into finger printing and metabolic profiling. 

Fingerprinting is a high throughput, global analysis of samples which provides a global snapshot 

without precisely quantifying or identifying all the metabolites in the sample. It is mainly used to 

discriminate between two samples under different biological conditions. Metabolic profiling 

analysis is an unbiased comprehensive analysis of all the metabolites of a biological system. 

The biological system is perturbed and abundances of all metabolites are compared between 

two types of samples to determine the effect of perturbation. This is more difficult than targeted 

analysis as the number and classes of the metabolites affected by the perturbation is usually not 

known and the results are sensitive to  bias and selective reporting (Fiehn O. 2002). A two 

tiered approach is also employed in some recent studies where an initial assessment is first 

performed with fingerprinting and then a more targeted approach is applied with higher 

resolution methods. For example, the two tiered approach was applied in comparison study of 

two closely related potato crops (Catchpole G.et al. 2005). 

The Metabolomics Workflow 

 A typical plant metabolomics experiment consists of the following sequential steps: 

experimental design, plant cultivation, extraction, separation and detection, and finally data 

analysis. Figure 2-1 illustrates this flow and shows how data must be collected in a searchable 

database for ongoing analysis and annotation. 
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Figure 2-1 Block Diagram of main steps of a typical plant metabolomics workflow 

Experiment Design  
The primary aim of most metabolomics study is to find the difference between the samples that 

are subjected to genetic or environmental stimuli. Metabolomic experiments tend to be noisy 

and interpretation of experimental results can be faulty due to bias, inadequate sample size, 

over fitting and excessive false discovery rate due to multiple hypotheses testing. Powerful 

multivariate analysis techniques that are commonly used in the high dimensional metabolomics 

data require adequate number of sample replicates. It is also very important to store the 

metadata of the experiment design in a structured setup so the experiment results can be 

tracked and verified. For mass spectrometry based experiments, SetupX and Binbase provide a 

framework that combines data and biological metadata for steering laboratory work flows and 

employs automated metabolite annotation (Scholz M. et al. 2007).  

Database 

Design Experiment 

Cultivate Plants 

Extraction 

Separation and Detection 

Data Analysis 
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Plant Cultivation 
 To avoid variations among samples in a plant metabolomics experiment, large volume growth 

chambers are normally suggested to minimize the variance due to soil, temperature and 

humidity. In case of small volume growth chambers rotation of the pots is suggested and in 

some recent studies soil less ceramic culture system is also used to maintain the exact supply 

of plant nutrition and water (Fukusaki E. et al. 2003).   

Extraction 
First, quenching is performed to freeze the status of the metabolome at a given time and then 

metabolites are extracted from a biological sample. Different extraction procedures are applied 

to different classes of metabolites depending on their solubility, stability, interferences in the 

extraction solvents. A good extraction procedure stabilizes a large number of metabolites 

without any degradation or modification of the targeted metabolites. There is always a tradeoff 

between comprehensiveness and metabolite stability because extraction conditions that are 

ideal for one class of metabolites may degrade other classes of metabolites (Maharjan R. et al. 

2003). 

Separation and Detection  
In a typical metabolomic profiling experiment, multiple biological samples from different stimulus 

conditions, various time points, and/or genetically distinct cultivars are analyzed to discover 

biomarkers and their associated biochemical pathways. There are several analytical 

technologies that are used for separation and detection of individual metabolites from a complex 

mixture. Each technology has its own advantages and disadvantages therefore a combination of 

these technologies is commonly applied. Some widely-used analytical methods are described 

below: 

Nuclear Magnetic Resonance (NMR) 

NMR is a non-destructive analytical method and can determine the molecular structure along 

with the quantity of metabolites. NMR has several advantages in comparison with other 



www.manaraa.com

9 
 

analytical technologies for high-throughput metabolite analyses. As a non-destructive method, 

NMR does not require metabolite derivitization and ionization (Hagel J. et al. 2008). The non-

destructive method can be highly automated to achieve high sample throughput.  NMR spectra 

can be obtained in vivo from cultured cells and tissues (Ratcliffe R. et al. 1994; Ratcliffe R. et al. 

2001). However, NMR suffers from relatively low sensitivity (Katja D. 2007; Pan Z. et al. 2007), 

than chromatography-coupled mass spectrometry (Sumner L. et al. 2003). 

Mass Spectrometry (MS)  

MS is often used as a hyphenated technique where the metabolite mixture is first separated 

using gas chromatography (GC), liquid chromatography (LC), or capillary electrophoresis (CE) 

and then analyzed by MS, which produces mass spectrum which is an intensity vs. m/z (mass-

to-charge ratio) plot representing a chemical analysis. The unknown compounds are identified 

by comparing its experimental mass spectrum against a library of mass spectra. Manual 

interpretation or software assisted interpretation of mass spectra are performed if the 

experimental mass spectrum does not match any spectrum in the database. Recent 

developments in the instruments have greatly increased the number of metabolites that can be 

accurately identified and quantified by chromatography-coupled MS. More detailed discussion of 

the MS technology is provided in the later part of this section. 

Separation in MS 

• Gas chromatography – mass spectrometry (GC-MS): GC-MS involves the separation 

of volatile, thermally stable analytes by GC and subsequent detection by electron 

ionization (EI) MS (Hagel J. et al. 2008). It is most suitable for analyzing amino acids, 

sugars, sugar alcohols, aromatic amines and fatty acids (Roessner U. et al. 2000). GC-

MS offers high chromatographic reproducibility and resolution and is lower in cost than 

the LC-MS or CE-MS that are described below (Kopka J. 2006; Katja D. 2007) , but 

some large and polar metabolites cannot be analyzed by GC. There are currently many 
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commercial and public mass spectral reference libraries for GC–MS including the NIST 

database (http://www.nist.gov/srd/nist1.htm). GC-MS technology requires that samples 

be either volatile or  chemically derivatized (Sumner L.et al. 2003). Recent applications 

of GC-MS include mutant classification (Messerli G. et al. 2007), functional genomics 

(Schauer N. et al. 2006), and the integration of metabolite and transcript datasets 

(Carrari F. et al. 2006; Baxter C. et al. 2007; Fatma K. et al. 2007). 

• Liquid chromatography – mass spectrometry (LC-MS): LC provides covers a wider 

range of metabolites than GC. Non-volatile metabolites can also be analyzed because it 

does not require derivitization.  However, it is difficult to compare LC-MS chromatograms 

between different laboratories because of the variety of LC-MS instrumentations (Moco 

S. et al. 2006). Mass spectral reference libraries for LC-MS (e.g. METLIN database 

(Smith C. et al. 2005) are also much fewer than the GC-MS libraries. Some examples of 

LC-MS include identifying secondary metabolites in roots and leaves of Arabidopsis (von 

Roepenack-Lahaye E.  et al. 2004), and to compare tubers of potato of different genetic 

origin and developmental stages (Vorst O.et al. 2005).  

• Capillary electrophoresis – mass spectrometry (CE-MS): CE-MS is useful in 

detecting charged metabolites because  it separates compounds according to their 

mass-to-charge ratios  (Hagel J. et al. 2008). CE-MS has been used to study amino 

acids, carbohydrates, vitamins, organic acids and inorganic ions (Soga T. et al. 2001).  

Soga T. et al. (2003) used CE-MS to analyze anionic metabolites, cationic metabolites, 

and nucleotides and Coenzyme A compounds, achieving a comprehensive coverage of 

the metabolome (Soga T. et al. 2003). CE-MS is also combined with CE diode array 

detection to simultaneously determine the main metabolites in rice leaves (Shigeru S. 

2004). 
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Detection 

     The metabolite detection process involves the following steps. 

• Noise reduction:  Baseline correction and noise reduction are performed on the raw 

data as a first step.  

• Peak identification and quantification:  After the initial noise reduction, peak detection 

and deconvolution of overlapped peaks are performed. National Institute of Standards 

and Technology (NIST ) provides the free software called AMDIS (Automatic Mass 

Spectral Deconvolution and identification System) which extracts individual component 

spectra  from  GC/MS data and compares all separated components against a library of 

compounds (Stein S.1999). WILEY (Palisade Cooperation, Newfield, NY) also provides 

mass spectrum library of compounds for identifications. Sample preparation and detector 

sensitivity cause the signal intensity to change over time, therefore internal standards 

are added to the sample. The variation in intensity of these internal standards is used to 

normalize between samples (Jonsson P. et al. 2005).  

• Structure elucidation: Some of the well-known small molecule structure databases 

which contain the physical-chemical properties of  standard compounds are LIGAND 

database (Goto S.et al. 2002) and the NCI database (Korcok M. 1985). The Golm 

Metabolome Database contains GC libraries for plant metabolites (Kopka J. et al. 2005).  

• Naming conventions for unknown compounds: Unbiased analysis of the 

metabolome discovers many new metabolites and it is very important to name these 

new metabolites in a consistent way so the results from various experiments can be 

compared against each other. The novel and unknown compounds from a metabolomics 

experiment that do not match any known compounds from the above described libraries 

are given a unique name which combines the information about retention index, polarity 

among other important features of the mass spectra for that compound (Bino R. et al. 
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2004). For example BJN-GCMS-CW-20.201 is the unique identifier for an unknown 

metabolite from Dr. Basil J. Nikolau’s (BJN) lab using Gas Chromatography Mass 

Spectrometry (GCMS) for Cuticle Wax (CW) extraction and with the retention index of 

20.201.  

Data Storage 
The outcome of a metabolomics experiment is a matrix that contains the metabolite abundance 

data along with the annotations for the metadata of the experiment. It is very important to 

capture the experimental conditions along with the experiment design information to be able to 

generate reproducible results. This can be enabled by a good lab information management 

system (LIMS) for data capture and submission. For examples : SetupX and Binbase provide a 

framework that combines mass spectrometry data and biological metadata for steering 

laboratory work flows and employs automated metabolite annotation (Scholz M. et al.2007). 

Standards for the annotation of metabolomics experiments are still under active development 

and are based on the recommendations of the Metabolomics Standards Initiative 

(MSI)(Sansone S. et al. 2007). MIAMET (Minimum Information About a METabolomics 

experiment) defines necessary information that should accompany the experimental data to 

make it useful and understandable (Bino R. et al. 2004). MIAMET suggests that each 

metabolomics experiment should contain information about its design, samples, sample 

preparation, metabolite extraction and derivation, metabolic profiling design, metabolite 

measurement and specifications. ArMet is a framework and database model for the description 

of plant metabolomics experiments. It captures the entire timeline of a plant metabolomics 

experiments (Jenkins H. et al. 2004). 

Examples of plant metabolomics databases: 

• The Golm metabolome database (GMD) provides metabolite GC-MS libraries and one 

set of metabolite profiling experiments for plants (Kopka J. et al. 2005). 
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• Metabolome Tomato Database (MoTo DB) is an LC-MS based metabolomics of tomato 

fruit (Solanum lycopersicum) (Moco S.et al. 2006). 

• Madison Metabolomics Consortium Data base (MMCD) - NMR data base (Cui Q. et al. 

2008). 

• Platform for Riken Metabolomic (PRIME) is database of multi-dimensional NMR 

spectroscopy, GC/MS, LC/MS, and CE/MS based metabolomics and provides tools for 

integration with other omics data (Akiyama K. et al. 2008). 

• Human metabolome database (HMDB) provides the most comprehensive database of 

human metabolites (Wishart D. et al. 2007). METLIN compiles an extensive list of known 

metabolites and provides their MS/MS spectra with links to KEGG database (Smith C. et 

al. 2005).  

Data analysis and Biological Interpretation 
The outcome of a metabolomics experiment is a data matrix that contains the metabolite 

abundance information for all the metabolites that were detected for a sample under a specific 

condition. The number of variables (metabolites) is usually much larger than the number of 

samples as shown in Table 2-1  
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Table 2-1 Example of Metabolomics Data 

 Methionine Serine Glu Metabolite 

10 

Metabolite 

11 

Metabolite 

12 

Metabolite 

13 

MT1 1.0 23.3 2000    .. 

MT2 1.5 23 N     .. 

MT3 1.3 22 2300    .. 

WT1 100.2 22 2500    .. 

WT2 111.1 22 2500    .. 

WT3 100 22.1 2200    .. 

 

Table 2-1 Example of Metabolomics Data A sample data matrix in a metabolomics 
experiment. There are 3 replicates of the mutant samples which are compared against the 3 
replicates of wild type samples to assess the effect of mutation. The abundance levels of many 
metabolites are tested. Sometimes the abundance is below the detection limit of measuring 
instrument which is shown as an “N” in the above example. A typical metabolomics data 
contains many features (metabolites) and very few samples. Some of the metabolites have 
known structures but many have unknown structures and are given a unique identifier. 
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A typical data analysis process is described below: 

Data Preprocessing:  

Data preprocessing is performed to improve the overall data quality and prepares the data 

for statistical analysis with improved accuracy. Some key preprocessing steps are described 

below 

• Outlier detection: The outliers are data points which differ from the most of the other 

data points. This difference can be due to the biological reasons which can lead to 

discovery of novel pathways (Tjalsma H. 2007).  The outliers which may be due to non-

biological reasons are then removed before any further statistical analysis. In general, 

the outliers are the values which are more than 3 standard deviations away from the 

sample mean. Statistical methods such as principle components analysis (PCA) and 

independent component analysis (ICA) which are discussed later can be used in outlier 

detection. No computational method can determine if the outlier is due to biological or 

non-biological reasons, therefore expert knowledge of the biology is required to decide if 

the outliers should be kept or not. 

• Missing value estimation: Missing values can be caused by signals that are below the 

detection limit of the instrument (True Missing) or because they were not collected. 

Bioconductor package, pcamethods, provides several algorithms for missing value 

imputation.  

• Data transformation: The normalization and transformations are performed to remove 

the non-biological variations and then make the data normally distributed. Metabolomics 

data can have various sources of uninduced variations like difference in abundance; 

metabolites in the central metabolism are more stable than the secondary metabolism, 

and large fluctuations under identical biological conditions, technical variations and 

heteroscedasticity. Range scaling is one of the most commonly used methods to give 
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equal importance to all the metabolites. Log transformation is also commonly used 

because it not only provides some scaling but also makes the multiplicative models 

additive and thus useful in removing heteroscedasticity (van den Berg R. et al. 2006) 

Pattern recognition and data mining:  

Unsupervised methods do not require any previous knowledge about the groups or classes that 

the data belongs to and can be used to summarize and find key features in the data and class 

discovery. Some of the popular unsupervised methods are described below:  

Clustering: 

 Clustering is used to group samples with similar metabolite profiles together. Clustering 

organizes the data into groups such that objects that are in a cluster are more closely related to 

each other than with the objects from the other clusters. To measure proximity many distance 

functions, e.g. Euclidian distance, Mahalanobis distance etc. are used. A good clustering results 

in the compact clusters that are also distant from other clusters. Some of the traditional 

clustering algorithms include hierarchical (HCA), k-means and self-organizing maps (SOM). 

HCA can be performed as an agglomerative methods or a divisive method. The agglomerative 

methods begin with each observation being considered as separate clusters and then proceeds 

to combine them until all observations belong to one cluster. Agglomerative methods are more 

commonly used in metabolomics studies. The divisive methods start with all of the observations 

in one cluster and then proceeds to partition them into smaller clusters. Some of the algorithms 

for HCA are average linkage, complete linkage, single linkage and Ward's linkage. Average 

linkage clustering uses the average similarity of observations between two groups as the 

distance measure between the two groups. Complete linkage clustering uses the farthest pair of 

observations between two groups to determine the similarity of the two groups. Single linkage 

clustering computes the similarity between two groups as the similarity of the closest pair of 

observations between the two groups. Ward's linkage uses an analysis of variance approach to 
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evaluate the distances between clusters. For example hierarchical clustering (HCA) was used to 

study volatile metabolites of 94 tomato genotypes which were obtained with Solid phase micro 

extraction (SPME-GC-MS). The first stage of clustering was helpful in removing the non-plant 

contaminant metabolites which were caused by the SPME fiber material. The HCA analysis 

resulted in two distinct clusters for the plant and non-plant metabolites. After removing the non-

plant metabolites from the data, hierarchical clustering was used again to cluster the genotypes 

(Tikunov Y. et al. 2005). Figure 2-2 shows an example of cluster analysis in of the data from 

2010 Arabidopsis Project  (www.plantmetabolomics.org) , where wild type samples under 7 

different conditions are compared against SALK_021108 mutant under the same 7 conditions. 

Two different linkage methods are employed in this analysis. We see that both the methods are 

able to put the most of the first 7 samples (Wild Type) and most of the next 7 samples (mutant) 

in different clusters. Low light mutant is clustering with low light wild type sample, which should 

be investigated further. 

 

 

Figure 2-2 Hierarchical Cluster Analysis (HCA) example  
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Principle Component Analysis (PCA) 

PCA transforms the high dimensional data into lower dimensions by finding the linear 

combinations of the original variables that maximize the variance within the data. The PCs are 

orthogonal and are ordered according to the variance explained. Therefore, the first PC explains 

the maximum variance. If the variance in the data reflects the true biological difference then 

plotting first PC against the second can be used to visualize the separation in the different 

classes. The original variables that contribute the most to the first few PCs are considered to be 

the most important. For example, PCA was used to analyze and normalize NMR data , which 

was followed by supervised discriminant function analysis using a priori information based on 

spectral replicates (Raamsdonk L. et al. 2001). Figure 2-3 shows the first two principal 

components of the data from 2010 Arabidopsis Project (www.plantmetabolomics.org) courtesy 

Dr. Oliver Fiehn’s lab at UC Davis. Wild type samples under 7 different environmental conditions 

are compared against SALK_021108 mutant under the same 7 conditions.  Six replicates in 

each condition were used. The wild type genotype is depicted by letter W and the mutant is 

depicted by letter M in the figure. We see that the first  two PCs  were able to separate the wild 

type samples and the mutant samples pretty well, but there are still some data points that are 

not separable which may be due to the nonlinear nature of the biological data. A scree plot 

shown in the figure 6 is generally used to determine the number of PCs. Figure 2-4 shows 

Scree plot of the PCA analysis from Figure 2-3. This plot shows that the first PC explains more 

than 30% variance in the data, second PC explains about 29% variance in the data and a 

combination of the first 5 PCs explain more than 90% of the variance in the data. 
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Figure 2-3 PCA Example 
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Figure 2-4 Scree Plot Example 

Classification 

PCA and clustering can visualize the separation of the samples according to the treatment 

factors (classes) but supervised methods are more powerful and can validate the separation 

numerically. The data is divided into 3 sets which are called training, test and validation sets. 

First the algorithm is trained using the training data and then class labels are predicted for the 

test data set. Some of the supervised learning methods are as following: Support Vector 

Machine (SVM) which tries to find the best hyper plane that maximizes the margin of separation 

between two classes. Decision tree (DT) algorithm branches the data and produces decision 

boundaries allowing the discovery of which metabolites are important. CART (classification and 

Principal Components 
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regression trees) and C4.5/C5 are the most popular decision tree algorithms. Other popular 

classification algorithms are artificial neural networks (ANN) and Random Forests (RF). ANN 

performs a good classification but does not explain the model very well, Tree based algorithms 

provide the rules but do not perform as well. 

Pathway Analysis 

• Pathway databases: The first step in pathway reconstruction is comparison with 

reference pathways like Kyoto Encyclopedia of Genes and Genomes (KEGG)(Kanehisa 

M.et al. 2004),  the ERGO system (Overbeek R. et al. 2003), BioCarta (BioCarta 2009), 

PathDB and the Roche Applied Science Biochemical Pathways chart which are available 

in digital form at ExPASy biochemical pathways page (Gasteiger E. et al. 2003). AraCyc 

(Zhang P. et al. 2005) and MetNetDB (Wurtele E. et al. 2007) are the most 

comprehensive databases to visualize biochemical pathways for Arabidopsis plants and 

has recently been expanded to include versions for all plant species (PlantCyc) which 

have sequenced genomes at the Plant Metabolic Network website (PMN_Team 2009). 

The software allows querying and the graphical representation of biochemical pathways 

and expression data MetaCrop (Grafahrend-Belau E. et al. 2008) is a hand curated 

database that summarizes diverse information about metabolic pathways in crop plants 

and allows automatic export of information for the creation of detailed metabolic models. 

• Metabolic Pathway modeling: The BRENDA database provides enzyme kinetics and 

substrate specificity database(Schomburg I. et al. 2004). 
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Abstract: 

PlantMetabolomics.org (PM) is a web portal and database for exploring, visualizing and 

downloading plant metabolomics data. Widespread public access to well-annotated 

metabolomics datasets is essential for establishing metabolomics as a functional genomics tool. 

PM integrates metabolomics data generated from different analytical platforms from multiple 

laboratories along with the key visualization tools such as ratio and error plots.  Visualization 

tools can quickly show how one condition compares to another and which analytical platforms 

show the largest changes. The database tries to capture a complete annotation of the 

experiment metadata along with the metabolite abundance data based on the evolving 

Metabolomics Standards Initiative (MSI). PM can be used as a platform for deriving hypotheses 

by enabling metabolomic comparisons between genetically unique Arabidopsis thaliana 

populations subjected to different environmental conditions. Each metabolite is linked to 

relevant experimental data and information from various annotation databases. The portal also 

provides detailed protocols and tutorials on conducting plant metabolomics experiments to 

promote metabolomics in the community. PM currently houses Arabidopsis metabolomics data 

generated by a consortium of laboratories utilizing metabolomics to help elucidate the functions 

of uncharacterized genes. PM is publicly available at http://www.plantmetabolomics.org. 

http://www.plantmetabolomics.org/
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Introduction 

In the post genomics era, metabolomics is fast emerging as a vital source of information to aid 

in solving systems biology puzzles with an emphasis on metabolic solutions. Metabolomics is 

the science of measuring the pool sizes of metabolites (small molecules of molecular weight 

<1,000 Da), which collectively define the metabolome of a biological sample (Fiehn et al., 2000; 

Hall et al., 2002).  Coverage of the entire plant metabolome is a daunting task as it is estimated 

that there are over 200,000 different metabolites within the plant kingdom (Goodacre et al., 

2004). Although technology is rapidly advancing, there are still large gaps in our knowledge of 

the plant metabolome.   

Despite this lack of complete knowledge and the immense metabolic diversity among plants, 

metabolomics has become a key analytical tool in the plant community (Hall et al., 2002).  This 

has led to the emergence of multiple experimental and analytical platforms that collectively 

generate millions of metabolite data points.  Because of this vast amount of data, the 

development of public databases to capture information from metabolomics experiments is vital 

to provide the scientific community with comprehensive knowledge about metabolite data 

generation, annotation, and integration with metabolic pathway data. Some examples of these 

public databases are given below. The Human Metabolome Project contains comprehensive 

data for more than 2000 metabolites found within the human body (Wishart et al., 2007). The 

Golm Database is a repository that provides access to mass-spectrometry (MS) libraries, 

metabolite profiling experiments, and related information from GC-MS (gas chromatography-

mass spectrometry) experimental platforms, along with tools to integrate this information with 

other systems biology knowledge (Kopka et al., 2005). The Madison Metabolomics Consortium 

Database contains primarily NMR spectra for Arabidopsis and features thorough NMR search 

tools (Cui et al., 2008). SetupX and Binbase provide a framework that combines MS data and 
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biological metadata for steering laboratory work flows and employs automated metabolite 

annotation (Scholz and Fiehn, 2007). 

A single analytical technique cannot identify and quantify all the metabolites found in plants. 

Thus, PlantMetabolomics.org (PM) was developed to provide a portal for accessing publicly-

available MS-based plant metabolomics experimental results from multiple analytical and 

separation techniques. PM also follows the emerging metabolomics standards for experiment 

annotation. PM has extensive annotation links between the identified metabolites and metabolic 

pathways in AraCyc (Mueller et al., 2003) at The Arabidopsis Information Resource (TAIR); 

(Rhee et al., 2003) and the Plant Metabolic Network (PMN, www.plantcyc.org), the Kyoto 

Encyclopedia of Genes and Genomes (KEGG), (Kanehisa et al., 2004), and MetNetDB (Wurtele 

et al., 2007).  

Standards for the annotation of metabolomics experiments are still under active development 

and the metadata types collected in PlantMetabolomics.org (PM) are based on the 

recommendations of the Metabolomics Standards Initiative (MSI) (Fiehn et al. 2007) and the 

Minimal Information for a Metabolomic Experiment, MIAMet (Bino et al., 2004) standards.  MSI 

attempts to capture the complete annotation of metabolomics experiments and includes 

metadata of the experiments along with the metabolite abundance data. The initial database 

schema design was guided by the schema proposed in the Architecture for Metabolomics 

(ArMet) project (Jenkins et al., 2004).  

 

Development of Plantmetabolomics.org: Rationale 

The rationale for the development of PM as an information portal is to provide free public access 

to experimental data along with cross-references to related genetic, chemical and pathway 

information. The portal also serves as an information resource for the field of metabolomics by 
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providing tutorials on how to conduct metabolomics experiments. It describes minimum 

reporting standards (Fiehn, 2007, 2007; Sumner, 2007) for plant metabolomics experiments 

based on the recommendations of the Metabolomics Standards Initiative (MSI). In addition, PM 

contains background information about the experimental design and tools that can be used to 

analyze the collected data (Helsel, 2005). To our knowledge, PM is the only plant metabolomics 

database that contains data from Arabidopsis metabolomics experiments that utilize multiple 

analytical detectors combined with different separation technologies. These include gas 

chromatography - mass spectrometry (GC-MS), gas chromatography-time-of-flight mass 

spectrometry (GC-TOF-MS), capillary electrophoresis-mass spectrometry (CE-MS), ultra high 

pressure liquid chromatography coupled to a hybrid quadrupole time-of-flight mass 

spectrometer (UPLC-Q-TOF-MS) and liquid chromatography-mass spectrometry (LC-MS) 

(Dunn and Ellis, 2005).  The statistical analysis and visualization tools are easy to use and aid 

non-statisticians in the analysis of the effects of different environmental conditions, genetic 

perturbations and other experimental factors. The information collected within PM can be used 

to form hypotheses about the roles of genes of unknown function in Arabidopsis by comparing 

the metabolome of a wild-type sample to that of a sample altered by a mutation at a target gene 

which can provide clues as to the function of that gene. The data (both biological and metabolic) 

and tools contained within PM, all available to the scientific community, are detailed in this 

paper. 

Design Requirements and Functionality 

PM allows users to explore and interpret data sets and put them in a biological context.  This 

requires the integration of relative metabolite abundance along with the metadata of the 

experimental conditions including growth, harvest and storage conditions of sample tissue, 

sample extraction, and instrument parameters. We also place an emphasis on ensuring ease of 

use and providing additional information about each identified metabolite by linking to other data 
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sources such as AraCyc, KEGG, MetNetDB and PubChem (Figure 3-1). The Metabolomics 

Standards Initiative (MSI) specifies the minimum amount of metadata from the metabolomics 

experiments that must be reported so that experiments can be replicated and results can be 

verified. These minimum data include descriptions of biological study design, sample 

preparation, data acquisition, data processing, and data analysis procedures. One goal of PM is 

to fulfill the outlined recommendations by the MSI.  Data contributors are required to use the 

standard data submission spreadsheet templates (available through the portal) to submit 

metabolomics data. These sheets follow ArMet and MIAMet specifications to capture the 

metadata of an experiment.  PM also includes educational video tutorials to aid metabolomics 

researchers in quality control. 

 

Figure 3-1  Diagram of the main components of the plantmetabolomics.org portal 
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PlantMetabolomics Content  

PlantMetabolomics in its current state houses the metabolite data generated from plant 

metabolomics experiments performed under the Arabidopsis 2010 program funded by the NSF. 

A consortium of metabolomics and metabolite profiling laboratories, in partnership with 

biochemists, biostatisticians and bioinformaticists, generated the data to formulate hypotheses 

about Arabidopsis genes of unknown function.  The consortium employed a strategy of 

generating Arabidopsis material at a single location followed by distribution to all analytical 

laboratories.  Different extraction processes and analytical techniques were used among the 

laboratories; ultimately providing analysis of roughly 1800 metabolites in each of the 

experiments conducted, around 400 of which are chemically defined. In total, among all 

experiments stored in the current database, roughly 3100 compounds were detected, including 

952 chemically defined compounds.  A total of 579 of the known compounds have been 

identified in AraCyc and many of them participate in  metabolic pathways described in that 

database. The metabolite data, along with the metadata, as generated by this consortium, are 

stored in the PM database.  

Experiment Annotation   
The pipelines used by the analytical laboratories in this consortium are captured through 

metadata for distribution via the database.  Each step of the process requires the collection of 

information to provide users with an understanding of collection, distribution and extraction of 

sample material, along with the instrumentation setup and data processing (Figure 3-2).  

Experimental metadata provides information about the growth and harvesting regimen, including 

the temperature, illumination, duration of growth, humidity and storage parameters, which were 

used to produce the Arabidopsis tissue samples for analysis.  This metadata also includes 

information that pertains to the genetic background of the samples.   
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The analytical metadata is collected in three sections: extraction, chromatography, and mass 

spectrometry metadata.  Each section includes details about the tissue sample extraction 

process and the instrumentation models, settings and parameters used for the chromatogram 

and spectrometer for each analytical platform.  

Each laboratory individually processes the metabolomics data obtained from the specific 

platform used.  Metabolite identification is based on procedures developed in each individual 

laboratory that utilize comparisons of retention time, retention index and mass fragmentation 

patterns compared to those of authentic standard compounds (when available) included in both 

private and public mass spectrometry libraries. Metabolite peaks that cannot be chemically 

annotated are given a unique identifier (Bino et al., 2004). The raw data is processed and 

normalized based on each laboratory’s instrument detection limit and analytical procedure.  

Specific processing procedures for each platform are available on the database on the protocols 

page.  The processed and normalized data from each laboratory has been collected for each 

experiment and loaded into the database. The public can access the data online or download it 

for use in other applications.  

Design of experiments:  
The plant metabolome responds to both environmental (E) and genetic (G) factors during plant 

growth.  Environmental parameters such as temperature, light intensity, growing medium, 

humidity and all other abiotic and biotic factors that affect plant growth and development are 

defined and stored. The genetic parameter is defined by the integrated expression of the alleles 

that encompass the organism’s genome. The design of experiments conducted by the above 

consortium took both the genetic and environmental parameters into consideration. Genetic 

parameters were manipulated by using Arabidopsis stocks that contained T-DNA insertions in 

either a gene of known function (GKF) or gene of unknown function (GUF) obtained from the 

Arabidopsis Biological Resource Center (ABRC; Columbus, OH).  The stocks were selected 
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based on availability and current knowledge and on gene predictions from sequence analysis 

and association networks (He, Lee, Walk and Rhee, manuscript in preparation).  All mutant 

stocks were visibly screened for phenotypes that resembled wild-type seedlings. Pictures of 

each mutant line at 17 days after sowing are available within PM.   

 

Figure 3-2  Schematic representation of the process used in generation of metabolite data  

PM currently contains metabolomics data from two types of experimental designs that varied the 

G*E interactions (Table 3-1).  The first setup used a combination of G*E variations, where the 

genetic parameter was comprised of two different genotypes (wild-type and one mutant stock) 

and the environmental parameter was changed in a single abiotic or biotic manner.  The 

experiments that fall into this first category provide information on the overall effect that both the 

environment and genetic parameters have on the metabolome of Arabidopsis seedlings.  The 
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second setup, which encompasses a large percentage of the data, varied only the genetic 

parameter and kept the environmental conditions constant during the growth period and across 

all experiments.  Each experiment contained wild-type seedlings along with 8-15 seedlings 

representing Arabidopsis stocks carrying T-DNA mutant alleles. Holding the environment 

constant and varying the genetic parameter provides metabolomic data that is a consequence 

of the genetic change and can therefore provide information about the consequence of mutating 

a specific gene within each stock. 

 

Experimental Data 
Metabolite abundance data can be downloaded along with the metadata for each experiment 

contained in PM.  There are three options for downloading metabolite abundance data.  The first 

option allows the users to select and download data from specific experiments and/or analytical 

platforms. The downloaded file contains the user-chosen results compiled in a comma 

separated values (csv) format. This option also allows users to download the correlation 

coefficients between the various replicates along with the data. Once they download the csv file 

they can look at the correlation coefficients and determine if they want to exclude part of the 

data if the correlation among the replicates is low. PM does not exclude any data based on the 

data quality issues but equips the users with the analysis tools and measurements so that the 

users can make informed decisions. The second option allows users to download the compiled 

Excel workbooks for individual experiments that contain a single sheet for each analytical 

platform. The workbooks contain the original data as submitted by the respective labs.  This 

option provides the data in an easy to use format that can be manipulated by the user for their 

own analyses. The third option comes in the form of a compressed file (.zip) that provides 

partially processed data for each of the mutant experiments.  This download includes: 1. The 

further scaled metabolite abundance data which reduces the variation within biological 
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replicates; 2. Scatter plots and correlation coefficient values between biological replicate data 

that provide additional information about the consistency of the replicates; 3. All the metabolites 

with false discovery rate (FDR) adjusted t-test p-value and ratios between mutant and wild type, 

so that users can define the significantly altered metabolites by combining the p-value and ratio 

(fold-change); 4. MVA-plots that show changes in metabolite abundance by displaying the log 

concentration ratio vs. the average log concentration across replicates. Detailed information 

about the data processing can be found in the readme.doc file included in the datasets.  

Table 3-1 Experimental set-ups used to generate metabolomics data contained in PM 

 

Experiment 

Name 

Factors Varied 

Environmental (E) Genetic (G) Total (GxE) 

EIE2 7 2 14 

Fatb Induction 2 2 4 

Elo1 Induction 3 2 6 

ME1 1 9 9 

ME2 1 11 11 

ME3 1 16 16 

ME4 1 14 14 

ME5 1 11 11 

. 

Tutorials 
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The database contains tutorial information about the methodologies for the metabolomics 

studies developed by the consortium. These methodologies reflect metabolomics’ utility in 

functional genomics and the current state of the technology. Metabolomics is not yet a widely 

utilized technology and it is thus important to train researchers in the methodologies, 

technologies, and standards in metabolite profiling. This ensures laboratory-to-laboratory 

reproducibility and facilitates meta-analyses across multiple experiments. 

Three video tutorials demonstrate the methods used for tissue harvesting and distribution.  The 

experimental metadata describes in detail the process used for harvesting tissue material and 

the “Tissue Harvest” video tutorial provides a visual guide for this process.  This tutorial details 

the process used to open Petri dishes containing sample material, to collect the tissue and to 

immediately halt metabolism by submerging the tissue in liquid nitrogen. This process is 

completed within <2 minutes as seen by the elapsed time on the timer. Each laboratory requires 

specific amounts of tissue for each analytical platform.  Collected samples must be weighed and 

sorted for shipment to the analytical laboratories. The two video tutorials “Sample weighing and 

Sorting of tissue samples” and “Sample Weighing (Closer View)” provide a visualization of this 

process.  The three video tutorials provide an experimentalist with an additional tool to 

understand and repeat the process used to generate tissue samples required for metabolomics 

experiments. 

The web portal also provides tutorials on how to browse, download and visualize the 

available data. These tutorials are provided as help buttons on all the main function pages as 

well as under the main “Tutorials” menu option.  Many examples and screen shots of resulting 

pages are provided in the tutorials. 
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Data Analysis and Visualization of Experimental Data 
The data analysis and visualization tools permit an analysis of data quality and hypothesis 

generation with dynamic graphs, which can be automatically generated with easy to use 

graphical user interfaces (GUIs). 

Users may compare metabolite levels under different experimental conditions through the 

generation of dynamic ratio plots of the metabolites using the GUI. Users can choose any two 

experimental factors to compare and select specific analytical platforms to include in the 

analysis.  The resulting ratio plot shows the abundance data (Figure 3-3). The x-axis shows the 

logarithm (base 2) ratio of the relative abundance of each metabolite between the mutant and 

wild type samples selected (see Materials and Methods).  The metabolites that have a relatively 

low fold change between the two factors are close to the central vertical y-axis and the 

metabolites that have a relatively high-fold change are distant from the central vertical y-axis.  

The metabolites with one or more replicates with missing values are shown with different 

colored marks for quick inspection of data quality.  

A summary of the metabolite abundance data is generated along with the ratio plot.  This 

summary contains metabolite names that can be ordered according to the number of missing 

values (1, 2, 3 or more, or all null values). Detailed metabolite information is available by clicking 

on its name on the list or on the glyph on the ratio plot. 

The error plot shows the change in the metabolite abundance level among the replicates. This 

helps the users to see if the significant change in the metabolite abundance is similar in 

replicate samples. The metabolite abundance data can also be visualized in a bar chart (Figure 

3-4) where metabolite abundance under different experimental parameters is shown for each 

replicate. 
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The metabolite details page also provides links to other databases to give users access to more 

details about the metabolites.  These links include metabolic pathway information from Aracyc 

and MetNetDB and compound information from PubChem, CAS, KEGG, and ChEBI. The 

names of all the pathways that contain a metabolite are shown on the metabolite annotation 

details page. Links to experimental data for all the other metabolites that participate in that 

pathway are also provided. 

 

Figure 3-3 Ratio Plot   
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Figure 3-4 Metabolite details of Methionine   
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Data Quality Checks:  
PM provides many options where a user can check the variability between different replicates 

(Figure 3-5) or see if some of the replicates are below the detection limit (Figure 3-3). The 

ultimate decision to exclude the data is left with the users. The data quality plots are provided 

along with the data. The ratio plot discussed in the previous section also provides instant access 

to replicates that are below the detection limit by showing them in different colors. A summary 

list provided with the ratio plots groups metabolites according to the number of missing values. 

The list can be ordered by the metabolite names to find if the same metabolite is detected by 

several platforms.  
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Figure 3-5 Replicate quality check 

 

Query Capabilities 
The database can be queried by individual metabolite or pathway names.  This feature helps an 

investigator search for a particular metabolite across different experimental conditions.  Once 

the metabolite is located in an experiment, the investigator can identify the pathways in AraCyc 

and MetNetDB in which this metabolite participates.  The pathway search option finds all 

metabolites in the PM database that are part of the same pathway.  The portal contains a local 

copy of AraCyc synonyms for metabolites along with the web links to AraCyc.  This helps in 
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searching for metabolites by either the names by which they are stored in the PM database or 

any of the synonyms that can be resolved by AraCyc. The local copy is updated every 4 

months. 

Conclusions 

One of the most important functions of any metabolomics database is to present collected data 

in a way that allows it to be used for comparison among different experiments and platforms.  

This requires that all metadata of standard operating procedures for sample preparation, data 

acquisition, and data processing be made available along with the corresponding results.  

Although there are some commercially available databases (Ridley et al., 2004), to our 

knowledge, PM is one of the first metabolomics databases available in the fundamental plant 

research arena.  The database combines the results from many different platforms that were 

used in parallel to analyze the same biological material.  At the end of the two-year pilot study, 

we have been able to provide data from 50 mutant lines and to capture baseline variations in 

metabolism in response to environmental condition variations during plant growth and tissue 

harvest.  Web-based visualization tools in the portal make it easy for a non-statistician to do 

initial exploration of the data, perform quality checks and generate hypotheses. This platform 

not only provides the metabolomics data and the analysis tools, it also promotes the field of 

metabolomics by providing educational tutorials on performing the metabolomics experiments 

and implementing the MSI standards. We acknowledge that some of the data from the pilot 

project has low reproducibility between the replicates therefore the users are guided to carefully 

evaluate the data quality with easy to use visualization tools and tutorials so they can make 

educated decisions about exclusion of data from their analyses. 

The metabolomics consortium expects to profile additional Arabidopsis mutant lines and upload 

the data to PM as it becomes available.  We plan to enhance the resource by adding the 

derived spectral peak location, mass-spectra, and metabolite peak integration data as well as 
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make the actual chromatograms available for download in community accepted formats such as 

NetCDF and mzML. We plan to add more analysis and visualization tools to make this portal a 

better aid for generating hypotheses and promoting the field of metabolomics within the 

community.  The web portal is also ready to accept MSI-compliant metabolomics data from 

other MS based metabolomics platforms for Arabidopsis and other plants. 

Materials and Methods 

Normalization and data processing 
 Metabolomics data generated are normalized and processed according to each specific 

laboratory’s protocol.  This process is detailed for each individual analytical platform and 

laboratory in the standard operating procedure protocols contained within PM.   

 

Missing Values: 
The detection limits for every run are typically experimentally determined by the corresponding 

labs and are reported along with the metabolite data. Missing values or below-detection limit 

measurements are replaced by ½ of the estimated detection limit if the detection limit is reported 

for that run; otherwise the missing values are replaced by ½ of the lowest value for that run 

(Helsel, 2005). 

Ratio Plot 
 

The x-axis ordinate is the logarithm (base 2) of the ratio of the relative abundance of each 

metabolite in the wild type vs. mutant plant: 

2log mt

wt

x axis µ
µ

 
− =  

 
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The values, µmt and µwt, calculated for each metabolite in each platform, are the sample means 

for the metabolite abundances of the replicates in the mutant and wildtype, respectively.  

 

Error Plots 
 

The standard error (SE) of the log-ratio was calculated using the delta method (or one-step 

Taylor-series) approximation, 

2 2
1
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mt wt
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SEmt and SEwt are the standard errors of the average mutant and wild-type metabolite 

abundances calculated by: ( ) ( )21
1

1

N

i xN N
i

SE x µ−
=

= −∑ , where N is the number of replicates. 

 

Compound Curation in AraCyc 
The experimentally verified Arabidopsis compounds identified in the PM project were added into 

a broader metabolic pathway framework in AraCyc by first matching the names of PM 

compounds to existing compounds in the database to link the two resources. Named 

compounds that were not found in AraCyc were investigated using several resources such as 

MetaCyc (Caspi et al., 2008), SciFinder Scholar (Wagner, 2006), Chemical Entities of Biological 

Interest (Degtyarenko et al., 2008)(ChEBI, EMBL-EBI), PubChem (NCBI), and KEGG(Kanehisa 

et al., 2004) to find chemical structures and synonyms. These compounds were entered into 

AraCyc and linked to PM. Compound names that describe multiple structures that cannot be 

conclusively distinguished in the metabolomics experiments were entered as “classes”. These 
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contain the chemical formula of the identified compound, a text description, and, if possible, a 

partial structure using “R groups” to denote structural ambiguities. To place these compounds 

into the appropriate metabolic context, we searched the scientific literature and the databases 

used for compound identification. In addition, specific reactions between identified compounds 

were made based on generic reactions present in AraCyc. 

Data Curation  
 Data is sent to the administrators using the sample spreadsheets. The spreadsheets are 

verified for format and then uploaded in the database by the administrators. The collaborators 

cannot upload the data themselves.  

Supplemental Data 

The following materials are available with this article. 

Data Base Schema 

The main structure and data organization of the PlantMetabolomics database are attached in 

Appendix–Supplementary Documents S1. 

Website Map 

The website map of PlantMetabolomics.org is attached in Appendix–Supplementary Documents 

S2. 

How to use the web portal 

A case study is provided in Appendix– Supplementary Documents S3. 
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Supplementary Document S1:  Data Base Schema 

 

 

 

Figure 3-6 Database Schema 
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Supplementary Document S2:  PM Website Map 

 

 

WWW.Plantmetabolomics.Org     

News   

Collaborators 

FAQ   

Publications  

 Links  

 Browse  

 Download  

Biology Metadata 

 Extraction Metadata  

MS Metadata   

Chromatography Metadata   

 Download 

 Submit Data  

Chromatography Metadata  

BiologyMetadata.doc  

ExtractionMetadata.xls  

MSMetadata.xls  

MetaboliteData.xls  

Plot Metabolite Ratios  

 Tutorials  

Gene targets  

Search  

Feedback  

 
Figure 3-7 Website Map  

http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/index.php
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/general/news.php
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/general/collaborators.php
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/general/faq.php
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/general/publications.php
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/general/links.php
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/datasets/browse.php
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/datasets/download.php?simple;
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/metadata/Biologymetadata.php?ExpID=2
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/metadata/ExtractionMeta.php?ExpID=2&targetID=1&d1=1
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/metadata/ExtractionMeta.php?ExpID=2&targetID=1&d2=1
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/metadata/ExtractionMeta.php?ExpID=2&targetID=1&d3=1
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/datasets/download.php
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/submitdata/senddata.php
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/media/excel/ChromatographyMetadata.xls
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/media/excel/BiologyMetadata.doc
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/media/excel/ExtractionMetadata.xls
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/media/excel/MSMetadata.xls
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/media/excel/MetaboliteData.xls
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/view/scatterplotform.php
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/tutorials/tutorials.php
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/genetargets/mutantlisting.php
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/search/search.php
http://lab.bcb.iastate.edu/sandbox/pbais05/alpha/plantmetabolomics_trimmed/general/feedbackform.php
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Supplementary Document S3: Applications of PM and Availability of 

Metabolomics Data: Case Study 

 
Case study: Visualize the difference in metabolite levels under two different stress conditions 

Scenario: An investigator is interested in how the metabolome changes when comparing mutant 

and wild-type samples. Specifically, the investigator wants to know which metabolites show a 

significant change and which biochemical pathways they are involved in.  The investigator is 

also interested in obtaining detailed information about specific metabolites from other web 

sources, other metabolites in the relevant biological pathways, and all the metadata associated 

with the selected mutant sample.  

For example, the investigator is interested in the metabolome changes for mutant 

SALK_003718, which has a T-DNA mutation in the Arabidopsis gene At3g16950 which encodes 

a plastid lipoamide dehydrogenase, compared to the combined wild-type samples, WtCol01 and 

WtCol02, in Mutant Experiment #3 (ME#3).  Below is a detailed description of a possible 

analysis path. Please note that analyses do not need to be done in this order.  Help icons are 

located throughout the database to aid users in understanding the tools available at PM.   

In the main web page, www.plantmetabolomics.org, the investigator first clicks on the “Tools” 

menu followed by “Plot Metabolite Ratio” on the menu option. To generate a ratio plot, data 

must be selected from individual experiments, for this example clicking on the drop down box by 

the experiment name “Mutant Experiment #3” allows the investigator to select the control 

(WtCol01) and the mutant (SALK_003718).  By default, all metabolite profiling platforms for this 

experiment are selected, but the investigator can exclude/specify platforms.  By clicking submit, 

the ratio plot is generated.  Before submitting, the investigator can view the metadata for a 

http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&name=At3g16950&sub_type=gene&x=0&y=0
http://www.plantmetabolomics.org/
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specific experiment by clicking on the experiment name. In this example, only the platform for 

amino acids is selected. 

The ratio plot (Figure 3-3) contains all metabolites analyzed within the selected platforms (in this 

case, the amino acid platform in ME#3).Metabolite names appear by moving the cursor over the 

plotted points. Contained within this page is a summary of the data quality. Missing or below 

detection limit values are depicted by different colored marks on the plot. The right side of the 

page shows summary information in a list form. This data can be downloaded as a text file by 

clicking on the download button on top. This list groups the metabolites according to number of 

replicates that are below detection limit. This list also shows the fold changes between the 

mutant and the control and be easily sorted.  Each point in the ratio plot or the metabolite name 

in the summary list is clickable and advances the investigator to the metabolite details page 

(Figure 3-4).  For this example, the investigator clicks on the metabolite methionine, which is at 

the 13 point on the y-axis and has a 1.5 fold change between the samples SALK_003718 and 

WtCol01.  The investigator is advanced to the metabolite detail page for methionine (Fig. 3.4).  

This page contains information about the molecular weight, chemical formula, CAS registry 

number, SMILES (Simplified Molecular Input Line Entry System) notation and pathway 

information for this specific metabolite.  It also provides links to other databases including 

AraCyc and the LIGAND database from KEGG. The bar chart at the bottom of this page graphs 

the abundance level of methionine for each replicate of all the samples profiled in ME#3. Since 

a metabolite can be detected by multiple analytical platforms, the investigator can search for 

that metabolite using the “Search” functionality. The resulting page provides links to the 

metabolite details page where the data can be visualized for each analytical platform in bar 

charts as described above.  The downloaded summary list is also helpful in finding a metabolite 

that is detected by multiple platforms. Since the different platforms use different extraction 

procedures, the amount of fold change can be different in different analytical platforms. In our 
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example, the downloaded summary list shows that methionine is detected by 3 analytical 

platforms in ME#1 and ME#2. The investigator can do a quick quality check of the platform at 

this time by generating the “Scatterplot of replicates” for SALK_003718 and WtCol01 lines in the 

3 analytical platforms that detect it and make a decision to exclude any replicates that do not 

have a good reliability. 

From the pathway information for methionine found on metabolite detail page, the investigator 

can search for other profiled metabolites involved in the “tRNA charging pathway”. The resulting 

page shows all the other metabolites in the PM database that belong to the given pathway. The 

investigator can download the CSV file of this data using the “Download” button provided at the 

top of the resulting page. 

Metabolite abundance information can be downloaded by clicking the “Download” link on the top 

of the results or by clicking the “Download” menu option on the main page.  

Following these steps provides a detailed analysis of a single mutant sample.  A comparison of 

all the metabolites profiled by the consortium in a mutant sample to that of wild-type gives an 

overall view of the changes that are occurring in the metabolome of this mutant line.  

Biochemical mapping of the metabolites that are hyperaccumulating and hypoaccumulating 

compared to wild-type provides preliminary evidence of the biochemical pathway the target 

gene may be associated with, thus leading to an initial hypothesis about the function of that 

target gene.   
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UPDATE 
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Preeti Bais, Stephanie M. Quanbeck, Basil J. Nikolau, and Julie A. Dickerson 
 

Abstract  

The PlantMetabolomics (PM) database (http://www.plantmetabolomics.org) contains 

comprehensive targeted and untargeted mass spectrum metabolomics data for Arabidopsis 

mutants across a variety of metabolomics platforms. The database allows users to generate 

hypotheses about the changes in metabolism for mutants with genes of unknown function. 

Version 2.0 of PlantMetabolomics.org currently contains data for 140 mutant lines along with the 

morphological data. A web-based data analysis wizard allows researchers to select 

preprocessing and data-mining procedures to discover differences between mutants. This 

community resource enables researchers to formulate models of the metabolic network of 

Arabidopsis and enhances the research community's ability to formulate testable hypotheses 

concerning gene functions. PM features new web-based tools for data-mining analysis, 

visualization tools and enhanced cross links to other databases. The database is publicly 

available. PM aims to provide a hypothesis building platform for the researchers interested in 

any of the mutant lines or metabolites. 

Introduction 

PlantMetabolomics.org stores the data from an NSF-funded multi-institutional consortium that is 

developing metabolomics as a functional genomics tool for elucidating the functions of 

Arabidopsis genes without visible phenotype. The consortium has established mass 

http://www.plantmetabolomics.org/
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spectrometry based metabolomics platforms that detect approximately 2000 metabolites, of 

which ~1000 are chemically defined [1]. The consortium generates the Arabidopsis biological 

material at a single location followed by distribution to the analytical laboratories for targeted 

and untargeted analyses. Phase 1 focused on investigating the robustness of the Arabidopsis 

metabolome, and defining the conditions that minimize the environmental and developmental 

effects. Subsequently, the consortium profiled the metabolome of specific T-DNA knockout 

alleles for these targeted genes [2]. These MSI-compliant metabolomics data [3, 4] are 

integrated with phenotypic data and data concerning protein function, transcription and other 

studies to help users generate hypotheses concerning the functions of the targeted genes. 

The updated PlantMetabolomics.org database features new datasets and morphological 

information for the plant community along with new web-based analysis tools. These tools 

include clustering and classification tools to distinguish between different mutants as well as 

determining which metabolites best differentiate the mutant. New visualization tools include ratio 

plots of metabolites and CytoscapeWeb [5] pathway visualization of metabolites on the AraCyc 

pathways [6]. 

Database Contents 

PlantMetabolomics.org contains mass spectrometry based metabolomics concentration data for 

140 novel single-knockout gene mutant lines in Arabidopsis. 53 the lines are novel since the last 

release and 35 were repeated to increase the number of replications. Approximately 998 known 

metabolites and 2020 unknown metabolites were detected using 7 different MS-based platforms 

for each of these mutant lines. The number of replicates for each line was also increased from 3 

replicates to 6 replicates.  

The database has also added morphological image data including features of the mutants’ 

leaves, cotyledons and roots at 16 days after imbibitions (DAI) and mature seeds using an 
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Olympus stereomicroscope with reflected and transmitted light sources and a high-resolution 

digital color image and scanning electron microscope.  Digital camera images of the roots of all 

the Arabidopsis thaliana tissue were collected at 6, 9, 13 and 16 days after imbibitions (DAI) in 

pixels and these were converted from pixels to root length measurements using Image J 

software [7]. A user can select a gene and compare its morphological images with the images 

from the wild type samples using a side by side image analysis tool in the database which is 

accessible from the when the user searches for a gene of interest from the home page or uses 

the search functionality to search for a gene. 

New annotation links to LipidMaps [8] have been added for metabolites. Structurally known 

metabolites have been annotated with metabolic pathway information from the AraCyc database 

(version 8.0) [6].  This annotation helps users understand how changes in a metabolite might 

affect the metabolism of the entire organism. Figure 4-1 shows an example of the new 

annotation and the images. 
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Figure 4-1  Visualization tools 

Analysis Tools for Metabolomics 

PlantMetabolomics.org includes new web based data analysis tools to aid a researcher in 

generating hypothesis about the metabolomics signature of a mutation. The data analysis 

wizard provides various options to normalize and preprocess data along with many choices of 

multivariate data analysis methods along with step by step guidance on the analysis pipeline. 

Default choices are provided at each step and the downstream analyses are made available 

only after the necessary preprocessing steps have been successfully performed. All the analysis 

results and figures are made available for download at the end of the analysis. The data 

analysis tool is developed with PHP and the R programming environment [9]. 

Data Preprocessing: The data preprocessing steps involve missing value imputation and 

normalization. For missing value imputation, the user selects a threshold to eliminate 
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metabolites that have a higher percentage of missing values than the threshold (e.g., for a 

threshold of 50%, a metabolite with 4 or more missing values out of 6 will be removed from 

further computation). For cases where there are fewer missing values, the missing values will 

be imputed by mean of the concentration for that metabolite over the remaining values.  The 

next step is data normalization. Data normalization weights the metabolites to emphasize 

different attributes of the data. Common choices described in [10], Range Scaling, Pareto 

Scaling, and Auto Scaling, help weight metabolites equally regardless of overall abundance. 

Log Transformation is used to correct for heteroscedascity and make multiplicative effects 

additive. The equations and a discussion of each method are accessible from the “?” icon in the 

data analysis wizard. After the preprocessing and normalization steps, a user can choose one 

or more of the analysis tools to analyze the data. Examples have been provided at each data 

mining step to help users interpret their results. 

Clustering Analysis: Biologists can generate hierarchical clustering plots to see which mutants 

are statistically close to each other and have similar metabolic profiles. Multiple choices for 

distance measure (Euclidean and Manhattan) and for the linkage method (Ward, complete, 

single, average, median, and centroid) are available. The goal is to group or segment a 

collection of samples (mutants) into subsets or "clusters", such that those within each cluster 

are more closely related to one another than objects assigned to different clusters. The result of 

clustering is presented as a dendrogram that a user can download from the PM website. Figure 

4-2 A shows an example of a dendrogram using hierarchical clustering analysis tool with 

average linkage and Euclidean distance parameters. 

Multi-Dimensional Scaling (MDS): A MDS plot is a commonly used multivariate exploratory 

data analysis tool. MDS is an exploratory multivariate data analysis method that is used in 

visualizing the structure of relations between entities by providing a geometrical representation 

of these relations in a lower dimensional space[11]. An MDS plot shows the similarities or 
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dissimilarities in data in two dimensions. In this case, the MDS plot shows statistical distances 

among samples based on their metabolomes’ signatures (Figure 4-2 D). Commonly used 

distance measures (Euclidean and Manhattan) are provided for this tool as well.  

Principal Component Analysis (PCA): PCA is one of the most commonly used methods used 

in high dimensional data analysis [12]. PCA provides a low dimension view of the 

multidimensional data by mathematically transforming a number of correlated variables into a 

smaller set of uncorrelated variables which are called Principal Components (PCs). A user can 

generate PCA plot against the first two principal components and also the scree plot that show 

the percentage of variability explained by subsequent  principal components. The PCs are 

orthogonal and are ordered according to the variance explained. Therefore the first PC explains 

the maximum variance. If the variance in the data reflects the true biological difference then 

plotting first PC against the second can be used to visualize the separation in the different 

classes. The original variables that contribute the most to the first few PCs are considered to be 

the most important.  The PCs can be downloaded for further analysis. Figure 4-2 B shows an 

example of PCA loadings plot for the first two PCs. 

Random Forest Classifier: Random Forests are used in metabolomics for classifying mutants 

into different classes [13]. A Random Forest Classifier is an ensemble of classification trees 

[14]. Random Forests work well for classification when the number of features is much greater 

than the number of observations and they have good predictive performance even when most 

input variables are noisy[15]. Of importance to biologists is that the output is easy to understand 

because it does not transform the metabolite data and the output ranks variables that are 

responsible for classification.   

The classification trees are built using a bootstrap sample of the data generated by using 2/3rd 

of the data for sample generation and keeping the remaining 1/3rd of the data for testing.  A 
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small subset of the variables is used in building a tree. The random Forest R package provides 

classification analysis between two or more types of samples (e.g., Wild Type and a Mutant line) 

[16] and generates the variable importance score plots of the key metabolites (Figure 4-2 

C).The list of top 30 key metabolites is also made available along with the annotations for the 

metabolites. One can click on a metabolite name on this list and see its annotation from various 

external databases such as KEGG, AraCyc and Lipid Maps. The automatically generated ratio 

plot shows the metabolite’s behavior in the other mutants as compared to wild type samples. 

The complete list can be downloaded by clicking at the download file link and used in other 

applications. The random forest classifier can also be downloaded along with the number of 

correctly classified and misclassified samples in each class. 

Download Results: At the end of analysis, the user can download all the results along with 

comma separated data files and as well as the R code used at each step of the analysis. 

Examples are also provided at each step to help the users with the interpretation of their results. 
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Figure 4-2  Data analysis tools 

Visualization Tools for Metabolomics 

New data visualization plots were added so a user can select a metabolite and see its behavior 

in 140 different mutations in a single plot (as a ratio of mutant and wild type samples). Similarly, 

a user can select a gene and see the behavior of all the metabolites (as compared to the wild 

type samples). After selecting a gene of interest, a user is taken to gene details page where 

they are shown the morphological data along with a log-ratio plot of the data. In the log-ratio plot 

for a gene, each point shows the log-ratio (to base-2) of a metabolite’s abundance in the 

(mutant sample):(wild-type sample).  The points are color coded according to the number of 

missing values for each metabolite and provide an instant data quality check. Clicking on a point 

in the log-ratio plot takes the user to a page where annotation of that metabolite with the 

information about its participation in pathways and links to other databases like KEGG [17] ), 
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LipidMaps [8], and PUBCHEM [18] are shown. The metabolites are annotated with a local copy 

of the AraCyc database [19] which was updated to the latest release of version 8.0 of AraCyc.  

Single metabolic pathways from AraCyc can also be viewed using CytoscapeWeb [5] and 

PathwayAccess tools[20]. From the annotation page, a user can select a pathway that contains 

their metabolite of interest and view the pathway with their metabolomics data superimposed for 

any of the experiments in the database. 

Conclusions and Future Developments 

This updated version of PlantMetabolomics.org provides metabolomics mass spectrometry-

based metabolomics data from multiple analytical platforms. A user can analyze this data using 

our web based data visualization and mining tools and generate the hypothesis about the 

functions of gene of their interest. A user can also perform a comparative analysis on a 

metabolite or metabolic pathway of interest and see their behavior under different mutations. 

We plan to enhance our coverage mutant lines to 203 novel lines.  

The next steps for this database are to create a viewer for extracting the spectra of the 

measured metabolite from the different platforms and replicates. This will create a valuable 

resource for mass spectra across many different platforms and gather information on 

measurement variability. This capability may allow PlantMetabolomics.org to link to the spectral 

data in the LC-MS Arabidopsis database, AtMetExpress [5] and the GC-MS Golm Metabolomics 

Database [23]. The flexibility of the pathway viewer will also be enhanced to give the user more 

ways to combine pathways into networks and select data. 

Availability 

The PlantMetabolomics.org database is available online and free to all without restriction at: 

http://www.plantmetabolomics.org/. 

http://www.plantmetabolomics.org/
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List of Figures 

Figure 4-1:  Visualization tools:  (A) Log-ratio plot of a metabolite (PA 34:2) where each point 

shows the ratio of the concentration of the given metabolite in mutant samples vs. the wild type 

samples. The highlighted mutant line (SALK_040250) looks interesting as it is away from the 

central vertical axis and thus depicts difference between mutant samples and the wild type 

samples.  (B) The user can instantly access the stereomicroscopic images for this mutant and 

compare them with wild type samples. Seed images at 250 X zoom of mutant’s seeds look a 

little distorted as compared to the wild type seeds (Seed image courtesy of Jennifer Robinson). 

(C) The user can also access the details of the metabolites including cross links to other 

databases.  (D) Clicking on any of the points in the log-ratio plot in (A) shows the log-ratio plot of 

all the metabolites for that mutant. For example, some fatty acids including tetradecanoic acid 

look interesting for this mutant as they are away from the central vertical axis and show large 

fold change between the wild type and mutant samples. 

Figure 4-2: Data analysis tools: (A) Hierarchical clustering of lipidomics data from the Welti Lab 

compares SALK_040250 (At1g61720) mutant line with wild type samples using Euclidean 

distance and average linkage method. (B) PCA loadings plot of the first two PCs shows that the 

wild type and mutant are not linearly separable. (C) Important metabolites for the classification 

between wild type and the mutant line using the Random Forest tool shows that the most 



www.manaraa.com

68 
 

important variables are glycerophospholipids with chain lengths of 34 and 36. (D) MDS plot of 

the mutant and wild type samples using the Manhattan distance measure which shows that the 

mutant and wild type are not separable and that there is an outlier in the data.  
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CHAPTER 5. DATA ANALYSIS PIPELINE IN FUNCTIONAL GENOMICS 

USING METABOLOMICS AND MACHINE LEARNING 

A paper to be submitted to Plant Physiology 

Preeti Bais, Basil Nikolau, David J. Oliver, Julie A. Dickerson 

Abstract: 

This analysis presents a biomarker discovery pipeline that uses machine learning and 

metabolomics to discover biochemical changes in a cell due to a single gene knock-out 

mutation in Arabidopsis. Since a single metabolomics technique cannot cover the whole 

metabolome, multiple mass spectrometry based metabolomics platforms are integrated 

together to get biomarkers of a mutation across a wide range of metabolite families. The use 

of different metabolomics platforms increases the coverage of the metabolome but multiple 

platforms present significant challenges on integrating data across the platforms. Different 

strategies for integrating the metabolomics abundance data from multiple platforms are 

compared to find the ideal method for biomarker discovery.  The Random Forest machine 

learning algorithm is used for classification of mutant and wild type samples and to generate 

reproducible models with a small set of metabolites that are responsible for the 

classification.  Unknown metabolites are a serious problem in any large scale metabolomics 

analysis as they do not provide any biological insight. Partial correlation networks are used 

in putatively identifying the unknown metabolites without the need for expensive and time 

consuming methods like NMR.  

         A proof-of-concept analysis on the  oxoprolinase (oxp1) and gamma-glutamyl 

transpeptidase (ggt1 and ggt2) single gene knock-out mutants in the glutathione 

degradation (GSH) pathway of the Arabidopsis confirms the known biology that OXP1 is 

responsible for conversion of 5-oxoproline (5-OP) to glutamic acid. In addition, ggt1/ggt2 
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analysis supports the hypothesis that the GGT genes may not be major contributors for the 

5-OP production. Also, the ggt2 mutation does not appear to alter the biochemical profile of 

the cells in comparison to the wild type samples, supporting the previous studies that it may 

have low level expression in the leaf tissues. 

This data analysis pipeline is implemented in a web based metabolomics analysis and 

visualization suite of tools at www.plantmetabolomics.org. 

Keywords: Metabolite Profiling, Arabidopsis, Machine Learning, GC-MS, LC-MS, Random 

Forests, Oxoprolinase, Correlation network

http://www.plantmetabolomics.org/
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Introduction 

Metabolomics is the science of measuring the pool sizes of metabolites (small molecules of 

molecular weight <1,000 Da), which collectively define the metabolome of a biological sample 

(Fiehn et al. 2000; Hall et al. 2002). Under stable environmental conditions, comparing the 

metabolome of a wild-type sample to that of a sample altered by a mutation at a target gene can 

provide clues as to the function of that gene (Bino et al. 2004). Metabolomics aims to capture 

the final outcome of the genes at the biochemical level and the metabolomics based biomarkers 

can provide an understanding of the biochemical networks involved in a cellular process. Since 

a single analytical technique can not cover all the metabolites of a biological system, multiple 

mass spectrometry (MS)-based metabolomics analytical and separation techniques were used 

on identical plant material to understand the gene functions (Bais  et al. 2010). Different 

strategies of platform integration are compared to find the ideal method that not only classifies 

the mutants from the wild type samples with most accuracy but also provides the most 

biologically meaningful subset of metabolites for the classification.  

Random Forest (RF) classifiers are used in classifying the mutant samples from the wild type 

samples and finding the key metabolites for the difference (Beckmann et al. 2007). RF 

classifiers have been shown to create usable models using metabolomics data (Enot et al., 

2006, Scott et al. 2010). RF classifiers are non-linear classifiers which keep the features (i.e., 

metabolites) distinct and provide an importance ranking for the effectiveness of each feature. 

Finally, putative identifications for key unknown metabolites are provided by using a large scale 

partial correlation analysis across multiple mutation lines and manual inspection of the mass 

spectra.  This helps in incorporating the unknown metabolites in understanding the biological 

significance of the biochemical difference between the mutants and the wild type samples. 

Other methods of structure determination of metabolites include MS-MS analysis or NMR which 
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are expensive and time consuming. Using the partial correlation networks across many different 

mutant lines to find if the key unknown metabolites are closely related to any known metabolites 

helps in hypothesizing the biological role of the unknown metabolites with the existing data. 

Materials and methods 

Plant Materials 
The oxp1 mutant (SALK_078745), the ggt1 mutant (SALK_004694) and the ggt2 mutant 

(SAIL_6_G02) have been described and characterized earlier (Ohkama-Ohtsu et al. 2007a, 

2008) and were a result of T-DNA insertion into col-0 (ecotype Columbia:col-0) (Alonso  et al. 

2003). The data is available at the project web site (www.plantmetabolomics.org) as part of 

Experiment E1 (oxp1) and Experiment 3 (ggt1 and ggt2). Six mutant samples were compared 

with the two sets of wild type samples (six samples in each set) from the same experiment 

batch. The wild type sets from the same experiment batch were also compared with each other. 

All the metadata about the plant growth conditions, extraction protocols, mass spectrometry, 

instruments etc. is available for download at www.plantmetabolomics.org (Bais et al. 2010).The 

partial correlation analysis was done using 70 mutant lines along with the one wild type line from 

GC-TOF platform (Supplementary Document 5.2).  

Metabolite Detection platforms 
The Arabidopsis Metabolomics Consortium combined parallel analytical outputs from seven 

analytical platforms conducted on aliquots of the identical plant material to generate abundance 

data on 1042 peaks. Approximately 60% of this data was obtained from non-targeted GC-TOF-

MS and LC-MS platforms. The targeted analytical platforms were fatty acids, cuticular wax 

extraction, lipidomics, phytoesterols and isoprenoids extraction platforms. Currently 498 of the 

detected metabolite peaks are chemically defined by the analytical labs and 554 peaks have 

unknown structures. The complete data generation pipeline including each platform’s extraction 

and analytical protocol is available at www.plantmetabolomics.org (Bais et al. 2010).  Table 5.1 

http://www.plantmetabolomics.org/
http://www.plantmetabolomics.org/
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shows the number of metabolites detected by each platform along with the number of 

structurally known and unknown compounds. There was a six percent overlap of known 

metabolites between the platforms where the same metabolite was detected by more than one 

lab. 

 

Table 5-1  Platform Summary 

 

 

 

 

  

Platform 
Known 

Metabolites 
Unknown 

Metabolites Total Metabolites 
Fatty Acids (FA) 37 79 116 
Cuticle Wax (CW) 37 25 62 
Phytoesterols (PHY) 11 17 28 
Isoprenoids (ISO) 6 3 9 
Lipidomics (LPD) 171 0 171 
GC-TOF-MS (GC-TOF) 195 420 615 
LC-MS (LCMS) 41 0 41 
Total 498 554 1042 
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Metabolomics Analysis Pipeline 

The complete metabolomics analysis pipeline in Figure 5-1 is described in the following 

paragraphs. 

 

Figure 5-1 Data Analysis Pipeline 

Data Preprocessing 
 Repeatability analysis was performed within the six replicates of any single genotype samples 

(wild type or mutant) for each of the seven platforms separately using the non-parametric 

Spearman’s correlation (Spearman 1904)  on log (base 2) transformed data. This analysis 

showed more than 50% Spearman’s correlation coefficients between all pairs of replicates from 

a single genotype. For the ggt1/ggt2 study, phytoesterols data was completely discarded due to 

lack of repeatability. Please see supplementary document 5.1 for the detailed discussion on 

repeatability analysis.   
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Exploratory Data Analysis 
Log2 ratios of the average concentration of a metabolite from mutant samples and the average 

concentration from the wild type samples were calculated and plotted for all metabolites for 

each of the mutants. All the metabolomics platforms were combined together to generate a 

single ratio plot. Each point in the ratio plot showed the ratio of average abundance in mutant 

samples vs. the average abundance on the wild type samples for a metabolite on logarithmic 

scale. These plots visualize the overall trends in metabolite concentrations under the two 

genotypes by comparing the relative abundances of metabolites between mutant and the wild 

type samples on logarithmic scale and show which metabolites changed the most between the 

two types of samples. The points (metabolites) that were far from the central vertical axis had 

changed the most between the two conditions. The ratio plots were generated before any other 

normalization or scaling to see absolute changes in the metabolite levels. 

 

Figure 5-2  Log2 ratio plot between oxp1 mutant and wild type samples  
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 Data Preprocessing /Normalization 
A metabolite was discarded if it had more than 50% missing values otherwise the missing 

values were imputed by the average value of the metabolite abundance. Range scaling was 

used in normalizing the data to a range of minimum abundance value for a metabolite and 

maximum abundance value for the same metabolite across all the samples to give equal 

importance to high and low abundance metabolites and to remove the instrumental response 

factor from the data for the integration of the platforms (van den Berg et al. 2006, Smilde 

2005). 

Data Integration across multiple platforms 
Two methods for data integration were compared to find the optimal way to integrate the data 

from multiple platforms. In the batch integration method, all the metabolites from the seven 

platforms were concatenated side by side. All the metabolites were marked with the platform 

identification number to treat the common metabolites between two or more platforms as 

separate variables. In the hierarchical platform integration method, separate classifiers were 

built for each platform.  

Random Forest (RF) Analysis 
RF analysis  (Breiman 2001) has been shown as a suitable method for classifying high 

dimensional data when the number of features is much  higher than the number of samples 

(Lanz  et al. 2009) . Reproducibility and biological significance are the major goals of any 

biomarker analysis. In this study, we used the RF’s classification ability to determine if the 

mutant samples were metabolically different from the wild type samples using the .632+ 

bootstrap method (Efron et al. 1997). The .632+ bootstrap method is a widely used variation of 

the bootstrap resampling method and has been shown to perform well when the signal to noise 

ratio is small as in case of metabolomics data (Molinaro et al. 2005). In the basic bootstrap 

method, n samples are drawn with replacement for learning the model and the samples that are 

left out serve as the test set. The bootstrap estimate is the average error made on the left-out 
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samples. The basic bootstrap method tends to be high-biased because the number of samples 

in the learning set has .632n unique observations on average. The .632+ bootstrap method 

corrects for this by taking a weighted average of the bootstrap estimate.  

The stability of a metabolite to be selected as a biomarker in the original samples was evaluated 

by its frequency of getting selected in the 100 bootstrap runs. High frequency for a metabolite 

meant more stability of that metabolite as a biomarker. Margins were calculated by subtracting 

mean class membership probability for the wrong class from the mean class membership 

probability of the right class in the 100 bootstrap runs. Higher margins showed more confidence 

in the class membership.  The R package “randomForest” and “varSelRF” were used in the RF 

analysis (Liaw et al. 2002, Diaz-Uriate 2007).  

 Incorporating the structurally unknown compounds  
Structurally unknown metabolites comprise of about half of our data. Many of the key 

metabolites from RF analysis are also structurally unknown and do not provide any biological 

insight even when they are selected as potential biomarkers from a classification method (e.g. 

RF) described in the above paragraph. We harnessed our in-house data of 70 different mutant 

lines to build partial correlation networks among the metabolites in a separate global analysis. 

This analysis highlighted the strong correlations among the pair of metabolites that survived 70 

different mutations and   thus helped us in forming the hypothesis about the structurally 

unknown metabolites. Previous attempts on generating linear correlation networks based only 

on Pearson’s pairwise-correlation between the metabolites have not been very successful and 

do not match well with the actual known biochemical networks as they are unable to distinguish 

between direct and indirect reactions (Steuer et al. 2003a and 2003b, de la Fuente et al. 2004). 

Recent studies (Krumsiek et al. 2011) have suggested using partial correlation on the Pearson’s 

correlation matrix to remove the indirect relations between the metabolites. Using the simulated 

and actual human lipid metabolomics data, the authors have shown that the low order partial 
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correlation networks are very similar to the actual biochemical networks. However, even the low 

order partial correlation analysis requires large number of samples and small number of 

features. We addressed this problem by analyzing a small subset of structurally unknown 

metabolites that were  potential biomarkers  from RF analysis along with all known metabolites 

using the data from 70 different mutant lines (503 samples)(Supplementary document 8.5).  

First order GGMs were built using the pairwise Pearson correlation coefficients between two 

metabolites that were conditioned against the correlation with all other metabolites. Top pairwise 

correlations were chosen using a q value of 0.05. Once the correlation network was built, all the 

known metabolites that were directly connected by a single edge to an important unknown 

metabolite were highlighted. R package “GeneNet” (Schafer et al. 2005 a, 2005 b) and R 

package “igraph” (Csardi et al. 2006) were used in analyzing the graphs.  

The mass spectrum of the unknown metabolite was then analyzed using the BinBase library 

(Fiehn  et al. 2005) to find if the queried unknown compound’s mass spectrum closely matched 

with any known compounds. BinBase library shows 10 most similar mass spectrums to the 

queried compound using similarity criteria developed by Stein et al. (Stein et al. 1994). BinBase 

library comparison is available for the 75% of our unknown compounds from our database that 

are detected by the GC-TOF platform. This combined analysis gave more insight in 

hypothesizing biological role of unknown metabolites without more expensive structure 

determination methods.  

Results and Discussion 

The GSH degradation pathway was used to test the proposed methods for biomarker selection 

across platforms. In the first example, key biomarkers from the oxp1 mutant were found which 

agree with existing results and the identity and functions of some key unknown metabolites 
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were hypothesized. In the second example, the key biomarkers helped identify the effects of the 

two GGT mutants (ggt1 and ggt2).  

Figure 5.3 shows the GSH degradation pathway with literature verified parts as solid lines and 

hypothesized reactions as dashed lines. In mammals, the γ-glutamyl cycle functions to recycle 

the amino acids in extracellular glutathione (GSH) before they are lost to the animal’s excretory 

system. A sequence of reaction initiated by the extracellular γ-glutamyl transpeptidase (GGT) 

removes the glutamic acid (Glu) from GSH and thus initiates the import of the component amino 

acids back into the cell.  The removal of Glu from GSH can either be a hydrolysis reaction or a 

transferase where the Glu is transferred to an acceptor amino acid resulting in a γ-glutamyl 

amino acid dipeptide.  Both reactions are catalyzed by GGT (part 1A in pathway block diagram).  

Once the γ-glutamyl amino acid is returned to the cytosol it is converted to 5-OP and the free 

amino acid by the enzyme γ-glutamyl cyclotransferase (GGC) (part 1B).  Oxoprolinase (OXP1) 

catalyzes the ATP-dependent conversion of 5-OP to glutamic acid (part 1C) (Van der Werf et al. 

1971).The metabolism of GSH in plants is quite different.  Instead of a single GGT, Arabidopsis 

has three or four such proteins.  GGT1 and GGT2 are apoplastic with strong GGT1 expression 

throughout the plant and GGT2 predominately found in siliques (Ohkama-Ohtsu et al., 2007a).  

 In mammals, the extracellular GGT reactions appear to be the major route of GSH turnover. 

GGT1 knockout mutants in Arabidopsis show no change in GSH levels with respect to Wild 

Type, although the extracellular oxidized form of GSH (GSSG) levels are significantly elevated 

either causing or resulting from increased oxidative stress in this mutant in previous studies 

(Ohkama-Ohtsu et al., 2007b, 2008).  The major route of GSH turnover in Arabidopsis appears 

to be via a cytosolic γ-glutamyl cyclotransferase (part2B-i, part 2B-ii) (Ohkama-Ohtsu et al., 

2008).  Kinetic estimates suggest that about 90% of GSH in Arabidopsis is metabolized by this 

route. The product of the cyclotransferase reaction is 5-OP which is converted Glu by 5-

oxoprolinase (part 2C).  There is a single copy of the gene (OXP1) and the knockout mutant for 
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this gene (OXP1) appears to be unable to metabolize 5-OP which accumulates to high levels 

(Ohkama-Ohtsu et al., 2008). In this study, the known part (part 2C) of GSH pathway confirms 

the results of biomarker detection methods described in this study and the unknown part of the 

pathway (part 2A) is used in hypothesizing the functions of the GGT1 and GGT2 genes. 

 

Figure 5-3  GSH degradation Pathway 
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Metabolomics platform integration 
Table 5.2 compares the two data fusion strategies where samples from the oxp1 mutant were 

compared against the two sets of wild type samples and the wild type (WT) samples are 

compared against each other. The WT1 vs. WT2 comparison showed negative margins and 

high bootstrap prediction error rates using 100 samples. The metabolic profiles of the two wild 

type samples were expected to be similar and thus the negative margins and high error rate 

predictions were as expected. Both fusion strategies were able to select 5-OP as a potential 

biomarker in the oxp1mutation with more than 10% frequency in 100 bootstrap runs. This 

measure asses how often a given metabolite, selected when running the variable selection 

procedure in the original sample, is selected when running the procedure on bootstrap samples 

and thus provides a measure of stability of a potential biomarker. The hierarchical fusion 

method had an ensemble of seven models that were built for each platform separately. It 

showed low error rates and high margins for the GC-TOF and LC-MS platforms but high error 

rates and low margins for all the other platforms. The hierarchical method provided more 

biologically meaningful results than the batch integration method (Table 5.2, Table 5.3). The 

oxp1 mutation has been shown to work between 5-OP and glutamic acid in the literature 

(Ohkama-Ohtsu et al., 2008). The weak classifiers in fatty acids, cuticular wax, phytosterols, 

isoprenoids, and lipidomics platforms suggested that this mutation did not affect the metabolites 

detected by those platforms as they could not be used to differentiate between the mutants and 

wild type samples. The hierarchical fusion method was able to select glutamic acid as a 

potential biomarker in 15% of the bootstrap runs from the LC-MS platform. Although the 

classification accuracies for both the methods were at par for this mutant, the goal of a 

biomarker discovery is study  is  not only to classify the samples accurately but also select a 

small set of metabolites that can be repeatedly used in future studies when the class 

memberships are unknown. The hierarchical method also provides accuracy criteria for the 
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individual metabolomics detection platforms which can be used by the future studies to focus 

the attention on the platforms that provide strong models for a mutation under study. 

Table 5-2  Comparison of Platform integration methods – oxp1 vs. wild type 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

oxp1 Study 
 Low Level Fusion High Level Fusion 

 
oxp1-WT WT-WT oxp1-WT  WT-WT  

Bootstrap 

estimate of 

prediction error 

(100 Iterations) 

0.13 0.56 

0.49 (FA), 
0.42 (CW) 
0.49 (PHY) 
0.53 (ISO) 
0.48 (LPD) 
0.14 (GC-TOF) 
0.24 (LC-MS) 

0.63 (FA) 
0.62 (CW) 
0.35 (PHY) 
0.55 (ISO) 
0.59 (LPD) 
 0.53 (GC-TOF) 
 0.62 (LC-MS) 

Average Margin 

0.48 -0.15 

 -0.03 (FA) 
 0.13 (CW) 
 0.04 (PHY) 
-0.22 (ISO) 
-0.12 (LPD) 
 0.52 (GC-TOF) 
 0.27 (LC-MS) 

-0.31 (FA) 
-0.27 (CW) 
0.17 (PHY) 
-0.15 (ISO) 
-0.27 (LPD) 
-0.07 (GC-TOF) 
-0.31 (LC-MS) 

# Of metabolites 
952 (after missing 

values imputations) 

62(FA) ,62(CW),28(PHY) 
9(ISO),147(LPD),615(GC-TOF) 

29(LC-MS) 
 

# of metabolites 

with >10% 

frequency in 

100 bootstrap 

runs  

7 NA 

21  
(After removing 

weak models 
FA,ISO,PHY,LPD) NA 
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Table 5-3   Potential Biomarkers for oxp1 mutation 

# 

Metabolite U/D  

Frequency in 
100 Bootstrap 
Models 

Correlated 
Compound 
 

Similar Binbase Compounds 
(similarity score) 

HL LL 
  1 isothreonic acid  U 0.19 0.22 
  2 GABA D 0.18 0.17 
  

3 

213179 U 0.17 0.21 5-OP Glutamine,  
N-acetyl-glutamic acid (*) 

4 succinic acid D 0.13 0.11 
  5 oxoproline U 0.11 0.11 
  

6 
303992 U 0.1 0.11 

5-OP, 
tocopherol Y , 
galactose 

Catechin (698.52) 

7 

200489 U 0.09 0.1 5-OP , 
homoglutamine  

N-acetyl-D-mannosamine 3 
(766.22), 
 galactitol (751.66),  
glucose 2 (746.55) 

8 melibiose U 0.08 0.05     
9 205672 D 0.07 0.06 mannonic acid NIST NA 

10 
alpha ketoglutaric 
acid D 0.07 0.04 

  11 4 hydroybutyric acid D 0.05 0.04     
12 glycerol D 0.05 0.02 

  13 serine D 0.05 0.02     
14 L Aspartic acid D 0.59 0.01     
15 GABA D 0.33 0.04     
16 L Isoleucine D 0.33 NA     
17 L Tryptophan D 0.26 NA     
18 L Citrulline D 0.17 NA     
19 L Glutamic Acid D 0.15 NA     
20 L Histidine D 0.12 0.01     
21 L Proline D 0.11 0.01     
22 L Threonine D 0.1 NA     
23 L Tyrosine D 0.09 NA     
24 L Phenylalanine D 0.06 NA     
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Incorporating the Unknown Metabolites 
An unknown metabolite with ID “213179” which is up regulated in oxp1 mutant samples appears 

with high frequency in the 100 bootstrap runs of RF classifiers in both methods. The partial 

correlation analysis shows that this metabolite is highly correlated with 5-OP across the 70 

mutation lines. Chromatogram analysis shows that this metabolite has high similarity with N-

acetyl-glutamic acid and glutamine. Our hypothesis about this metabolite is that it is a derivative 

of glutamic acid and is being up regulated in the mutant samples because 5-OP is not getting 

converted to glutamic acid due to the oxp1 mutation. 

Biological Confirmations and Discoveries 

oxp1 Mutant vs. Wild Type  

The potential biomarker list consists of up regulated  5-OP and down regulated glutamic acid 

along with many amino acids that are also down regulated. The results support the literature 

evidence that OXP1 works between 5-OP and glutamic acid. The oxp1 mutation down-regulates 

all the related amino acids as glutamic acid is a central molecule in amino acid metabolism in 

higher plants and  the α-amino group of glutamic acid is transferred to all other amino acids via 

assimilation and dissimilation of ammonia. Both the carbon skeleton and α-amino group are 

involved in the synthesis of γ-aminobutyric acid (GABA), arginine, and proline (Forde et al. 

2007). Sugars and the unknown metabolites putatively identified as sugars and flavonoid 

catechin  are up regulated in the mutant samples. The lack of differentiation in the models 

created from the targeted metabolomics platforms also showed that the oxp1 mutation may not 

affect lipids, fatty acid, cuticular wax, and isoprenoid or phytoesterol pathways.  

ggt1 Mutant vs. Wild Type  

The best classifier for this mutation was generated by the LC-MS platform in the hierarchical 

clustering method. The list of potential biomarkers consisted of many amino acids which were 

up regulated in the mutant samples (Table 5.4).  Notably, the potential biomarkers did not 
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include 5-OP. The results from this analysis confirm the hypothesis that GGT1 is not part of any 

major pathways for the 5-OP production and thus the ggt1 mutation should not affect 5-OP 

concentration (Ohkama-Ohtsu et al., 2008).  

Table 5-4   RF classification results for ggt1 mutant using two platform integration methods 

 

 

 

 

 

ggt1 Study 

 
Batch Integration Hierarchical Integration 

ggt1-WT WT-WT ggt1-WT  WT-WT  
Bootstrap estimate of 

prediction error (100 

Iterations) 

0.39 0.51 

0.45 (FA) 
0.45 (CW) 
0.41 (ISO) 
0.49 (LPD) 
0.41 (GC-TOF) 
0.17 (LC-MS) 

0.54 (FA) 
0.59 (CW) 
0.51 (ISO) 
0.46 (LPD) 
0.51 (GC-TOF) 
0.58 (LC-MS) 

Average Margin 

0.15 -0.07 

0.07 (FA) 
0.04 (CW) 
0.13 (ISO) 
-0.02 (LPD) 
0.11 (GCT-OF) 
0.46 (LC-MS) 

-0.14 (FA) 
-0.24 (CW) 
-0.06 (ISO) 
 0.08 (LPD) 
-0.01 (GCT-OF) 
-0.19 (LC-MS) 

# Of metabolites 1043 (959 after 
missing values 
imputations) 

91(FA) ,62(CW), 9(ISO),157(LPD),614(GC-TOF) 
32(LC-MS) 

 
# of metabolites with 

>10% frequency in 100 

bootstrap runs 

12 NA 24 NA 
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Table 5-5  Potential Biomarkers for ggt1 mutation 

 

 

 

 

 

 

 

 

 

 

ggt2 Mutant vs. Wild Type  

Both methods of data integration were unable to separate ggt2 and wild type samples as 

evident from the high prediction error rates and low margins from models built on all seven 

platforms (Table 5.6). The high error rate and low margins were at par when the two sets of wild 

type samples were compared with each other. This suggests that the ggt2 mutation may not 

have affected the biochemical profile of the cell, which supports the evidence that ggt2 has low 

expression levels in leaf tissues. Also, 5-OP was not significantly changed in this mutation as 

well, suggesting that GGT2 is also not involved in 5-OP production confirming the hypothesis 

from the previous studies (Ohkama-Ohtsu et al., 2008).  

 

 

 

 
Metabolite Name Up or Down? 

Frequency in 100 Bootstrap 
iterations 

   
Hierarchical 
Integration 

Batch 
integration 

1 L Proline U 0.73 0.21 
2 L Histidine U 0.7 0.14 
3 L Citrulline U 0.29 0.05 
4 L Asparagine U 0.28 #N/A 

5 
L alpha Amino n butyric 
acid U 0.23 0.06 

6 Beta Alanine U 0.2 #N/A 
7 L Glutamine U 0.13 #N/A 
8 delta Hydroxylysine U 0.09 #N/A 
9 L Homocystine D 0.08 #N/A 
10 Ethanolamine D 0.07 #N/A 
11 L Valine U 0.06 #N/A 
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Table 5-6  RF classification results for ggt2 mutant 

Conclusions 

This study shows that metabolomics platforms can be integrated effectively to form hypotheses 

about the functions of a gene. For example, in the oxp1 mutation study, both the reactant and 

the product of a hypothesized reaction (5-OP and glutamic acid) were detected by different 

metabolomics platforms (GC-TOF and LC-MS) to generate the biomarker profile of this 

mutation. The analysis confirms that OXP1 works between 5-OP and glutamic acid in the 

gamma-glutamyl pathway and may not affect pathways involving fatty acids, lipids, isoprenoids, 

sterols and cuticular waxes. Lack of any metabolic change in the ggt2 mutant samples supports 

the previous evidence that GGT2 may have low expression levels in the leaf tissues. We have 

explored a cost effective way of putatively identifying structurally unknown metabolites using 

partial correlation networks across many mutant lines.  

ggt2 Study 

 Batch Integration Hierarchical Integration 

 
ggt2-WT WT-WT ggt2-WT  WT-WT  

Bootstrap  estimate of 

prediction error (100 

Iterations) 

0.48 0.51 

0.49 (FA) 
0.45 (CW) 
0.46 (ISO) 
0.45 (LPD) 
0.46 (GC-TOF) 
0.51 (LCMS) 

0.55(FA) 
0.57 (CW) 
0.52 (ISO) 
0.43 (LPD) 
0.53 (GC-TOF) 
0.56 (LCMS) 

Average Margin -0.05 -0.02 

-0.03 (FA) 
0.05 (CW) 
0.03 (ISO) 
0.04 (LPD) 
-0.01 (GC-TOF) 
-0.05 (LCMS) 

-0.11 (FA) 
-0.21 (WT) 
-0.05 (ISO) 
-0.01 (LPD) 
-0.05 (GC-TOF) 
-0.18 (LCMS) 

# Of metabolites 
966 (after missing 

values imputations) 

95 (FA),  
 62 (CW) 
 9 (ISO) 

 153 (LPD) 
615 (GC-TOF) 

 32 (LCMS) 
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List of Tables 

1. Table 5.1: Summary of number of metabolites detected by each platform along with the 

number of structurally known and unknown compounds. Total 1042 metabolites are 

detected by seven mass spectrometry (MS) based platforms. 498 metabolites have known 

structures and 544 are unknown metabolites. 

2. Table 5.2: Comparison of two data integration methods for oxp1 mutant. High margins 

between class votes and low prediction error show that the model was strong and was able 

to classify the two genotypes. The wild type vs. wild type comparisons show weak models in 

both integration methods as expected. Similarly, oxp1 vs. wild type models for all the 

platforms other than GC-TOF and LCMS also have weak models suggesting that there was 

no significant effect of this mutation on the metabolites detected by these platforms. 

3. Table 5.3: List of biomarkers from the oxp1 analysis. The first 13 compounds are detected 

by the GC-TOF platform and the next 11 are detected by LC-MS platform. The 3rd column 

shows if the metabolite is up or down regulated in the oxp1 mutant samples. The two right 

columns show highly correlated compounds to the unknown compound and the BinBase 

matching compounds and similarity scores from the BinBase database.  5-OP and 

glutamate are both shortlisted as potential biomarkers using the hierarchical data integration 

method along with amino acids that are down regulated in the mutant samples. Glutamic 

acid is missed in batch integration method. 

4. Table 5.4: List of biomarkers from the oxp1 analysis. The first 13 compounds are detected 

by the GC-TOF platform and the next 11 are detected by LC-MS platform. The 3rd column 

shows if the metabolite is up or down regulated in the oxp1 mutant samples. The two right 

columns show highly correlated compounds to the unknown compound and the BinBase 

matching compounds and similarity scores from the BinBase database.  5-OP and 

glutamate are both shortlisted as potential biomarkers using the hierarchical data integration 

method along with amino acids that are down regulated in the mutant samples. Glutamic 

acid is missed in batch integration method. 

5. Table 5.5: List of biomarkers for ggt1 mutant from the best performing LC-MS platform. 5-

OP does not appear as a potential biomarker in any of the data integration method.  

6. Table 5.6: Classification of ggt2 mutant and wild type samples using batch and hierarchical 

data integration methods. The error rate and margins are at par with wild type vs. wild type 
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classification models in both data integration methods, suggesting that this mutation does 

not cause any biochemical changes in the cell and GGT2 may be a redundant gene. 
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all the seven platforms generated at www.plantmetabolomics.org. Metabolomics platforms 

are shown with alternating color bands.  The x-axis shows the average log2 ratio between 

the mutant and wild type samples for each metabolite. The metabolites that are far from the 
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mutants along with significant changes in some other metabolites (e.g. 205672, melibiose) 

that are investigated further.  

3. Figure 5.3: GSH degradation pathway in animals and Arabidopsis. Solid lines represent 
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parts of the pathway. In mammals, GSH is degraded by the sequential reaction of GGT, 

GGC and OXP1 to yield glutamate as shown in the left figure (part 1A, 1B and 1C).  5-OP to 

glutamate conversion is verified in Arabidopsis using OXP1 mutant (part 2C) but the action 

of GGT1 and GGT2 appears to be different as these mutations do not cause any significant 

changes in 5-OP levels. 

 

Supplementary Documents 

1. Appendix– Supplementary Documents:  Supplementary Document 8.1 Replicate quality 

analysis of six replicates of mutant samples of GC-TOF platform and summary of replicate 

quality analysis for all the other platforms. 

2. Appendix – Supplementary Documents:  Supplementary Document 8.2: List of Genotypes 

used for Partial correlation Analysis  

Acknowledgments 

This project was supported by NSF grant #08200823. The following labs generated the 

metabolomics data in PlantMetabolomics.org: Oliver Fiehn (UC Davis), B. M. Lange 



www.manaraa.com

90 
 

(Washington State University), Lloyd Sumner (Noble Foundation), Ruth Welti (Kansas State 

University) , Vladimir Shulaev (Virginia Bioinformatics Institute), and Basil Nikolau (Iowa State 

University) as part of the Arabidopsis Metabolomics Consortium.  



www.manaraa.com

91 
 

References 

Alonso, J. M., A. N. Stepanova, et al. (2003). "Genome-wide insertional mutagenesis of 
Arabidopsis thaliana." Science 301(5633): 653-657. 

Bais, P., S. M. Moon, et al. (2010). "PlantMetabolomics.org: a web portal for plant 
metabolomics experiments." Plant Physiol 152(4): 1807-1816. 

Beale, M. H., J. L. Ward, et al. (2009). "Establishing substantial equivalence: 
metabolomics." Methods Mol Biol 478: 289-303. 

Beckmann, M., D. P. Enot, et al. (2007). "Representation, comparison, and 
interpretation of metabolome fingerprint data for total composition analysis and 
quality trait investigation in potato cultivars." J Agric Food Chem 55(9): 3444-
3451. 

Bino, R. J., R. D. Hall, et al. (2004). "Potential of metabolomics as a functional genomics 
tool." Trends Plant Sci 9(9): 418-425. 

Catala, R., E. Santos, et al. (2003). "Mutations in the Ca2+/H+ transporter CAX1 
increase CBF/DREB1 expression and the cold-acclimation response in 
Arabidopsis." Plant Cell 15(12): 2940-2951. 

de la Fuente, A., N. Bing, et al. (2004). "Discovery of meaningful associations in 
genomic data using partial correlation coefficients." Bioinformatics 20(18): 3565-
3574. 

Efron B , T. R. (1997). "Improvements on cross-validation: the .632+ bootstrap method." 
J American Statistical Association(92:548-560). 

Enot, D. P., M. Beckmann, et al. (2006). "Predicting interpretability of metabolome 
models based on behavior, putative identity, and biological relevance of 
explanatory signals." Proc Natl Acad Sci U S A 103(40): 14865-14870. 

Fiehn, O., Robertson D, Griffin J, van der Werf M, Nikolau B, Morrison N, Sumner LW, 
Goodacre R, Hardy NW, Taylor C, Fostel J, Kristal B, Kaddurah-Daouk R, 
Mendes P, van Ommen B, Lindon JC, Sansone S-A (2007). "The metabolomics 
standards initiative (MSI)." Metabolomics 3: 175-178. 

Fiehn, O., Sumner LW, Rhee SY, Ward J, Dickerson J, Lange BM, Lane G, Roessner 
U, Last R, Nikolau B (2007). "Minimum reporting standards for plant biology 
context information in metabolomics studies." Metabolomics 3: 195-201. 

Fiehn, O. (2008). "Extending the breadth of metabolite profiling by gas chromatography 
coupled to mass spectrometry." Trends Analyt Chem 27(3): 261-269. 

Fiehn, O., J. Kopka, et al. (2000). "Metabolite profiling for plant functional genomics." 
Nat Biotechnol 18(11): 1157-1161. 

Fiehn, O., G. Wohlgemuth, et al. (2005). "Setup and Annotation of Metabolomic 



www.manaraa.com

92 
 

Experiments by Intergrating Biological and Mass Spectrometeric Metadata." 
Proceedings Lecture Notes Bioinformatics 3615: 224-239. 

Fiehn, O., G. Wohlgemuth, et al. (2008). "Quality control for plant metabolomics: 
reporting MSI-compliant studies." Plant J 53(4): 691-704. 

Forde, B. G. and P. J. Lea (2007). "Glutamate in plants: metabolism, regulation, and 
signalling." J Exp Bot 58(9): 2339-2358. 

Hall, R., M. Beale, et al. (2002). "Plant metabolomics: the missing link in functional 
genomics strategies." Plant Cell 14(7): 1437-1440. 

Johnson, C. H., A. D. Patterson, et al. (2011). "Radiation Metabolomics. 4. UPLC-ESI-
QTOFMS-Based Metabolomics for Urinary Biomarker Discovery in Gamma-
Irradiated Rats." Radiat Res. 

Kanehisa, M., S. Goto, et al. (2004). "The KEGG resource for deciphering the genome." 
Nucl. Acids Res. 32(90001): D277-280. 

Krumsiek, J., K. Suhre, et al. (2011). "Gaussian graphical modeling reconstructs 
pathway reactions from high-throughput metabolomics data." BMC Syst Biol 5: 
21. 

Lanz, C., A. D. Patterson, et al. (2009). "Radiation metabolomics. 3. Biomarker 
discovery in the urine of gamma-irradiated rats using a simplified metabolomics 
protocol of gas chromatography-mass spectrometry combined with random 
forests machine learning algorithm." Radiat Res 172(2): 198-212. 

Lee do, Y. and O. Fiehn (2008). "High quality metabolomic data for Chlamydomonas 
reinhardtii." Plant Methods 4: 7. 

Lin, P., J. Li, et al. (2008). "A missense mutation in SLC33A1, which encodes the acetyl-
CoA transporter, causes autosomal-dominant spastic paraplegia (SPG42)." Am J 
Hum Genet 83(6): 752-759. 

Ling, Q. D., F. C. Chang, et al. (2006). "Synthesis and dynamic random access memory 
behavior of a functional polyimide." J Am Chem Soc 128(27): 8732-8733. 

Mackey, D., Y. Belkhadir, et al. (2003). "Arabidopsis RIN4 is a target of the type III 
virulence effector AvrRpt2 and modulates RPS2-mediated resistance." Cell 
112(3): 379-389. 

Molinaro, A. M., R. Simon, et al. (2005). "Prediction error estimation: a comparison of 
resampling methods." Bioinformatics 21(15): 3301-3307. 

Monte, E., J. M. Alonso, et al. (2003). "Isolation and characterization of phyC mutants in 
Arabidopsis reveals complex crosstalk between phytochrome signaling 
pathways." Plant Cell 15(9): 1962-1980. 

Mueller, L. A., P. Zhang, et al. (2003). "AraCyc: a biochemical pathway database for 



www.manaraa.com

93 
 

Arabidopsis." Plant Physiol 132(2): 453-460. 

Ohkama-Ohtsu, N., A. Oikawa, et al. (2008). "A gamma-glutamyl transpeptidase-
independent pathway of glutathione catabolism to glutamate via 5-oxoproline in 
Arabidopsis." Plant Physiol 148(3): 1603-1613. 

Ohkama-Ohtsu, N., S. Radwan, et al. (2007). "Characterization of the extracellular 
gamma-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis." Plant J 
49(5): 865-877. 

Ohkama-Ohtsu, N., Y. Sasaki-Sekimoto, et al. (2011). "12-oxo-phytodienoic acid-
glutathione conjugate is transported into the vacuole in Arabidopsis." Plant Cell 
Physiol 52(1): 205-209. 

Ohkama-Ohtsu, N. and J. Wasaki (2010). "Recent progress in plant nutrition research: 
cross-talk between nutrients, plant physiology and soil microorganisms." Plant 
Cell Physiol 51(8): 1255-1264. 

Ohkama-Ohtsu, N., P. Zhao, et al. (2007). "Glutathione conjugates in the vacuole are 
degraded by gamma-glutamyl transpeptidase GGT3 in Arabidopsis." Plant J 
49(5): 878-888. 

Patterson, A. D., C. Lanz, et al. (2010). "The role of mass spectrometry-based 
metabolomics in medical countermeasures against radiation." Mass Spectrom 
Rev 29(3): 503-521. 

Schafer, J. and K. Strimmer (2005). "An empirical Bayes approach to inferring large-
scale gene association networks." Bioinformatics 21(6): 754-764. 

Schafer, J. and K. Strimmer (2005). "A shrinkage approach to large-scale covariance 
matrix estimation and implications for functional genomics." Stat Appl Genet Mol 
Biol 4: Article32. 

Scott, I. M., C. P. Vermeer, et al. (2010). "Enhancement of plant metabolite 
fingerprinting by machine learning." Plant Physiol 153(4): 1506-1520. 

Shannon, P., A. Markiel, et al. (2003). "Cytoscape: a software environment for 
integrated models of biomolecular interaction networks." Genome Res 13(11): 
2498-2504. 

Smilde, A. K., M. J. van der Werf, et al. (2005). "Fusion of mass spectrometry-based 
metabolomics data." Anal Chem 77(20): 6729-6736. 

Stephen E. Stein , D. R. S. (1994). "Optimization and testing of mass spectral library 
search algorithms for compound identification." Journal of the American Society 
for Mass Spectrometry 5(9). 

Steuer, R., J. Kurths, et al. (2003). "Interpreting correlations in metabolomic networks." 
Biochem Soc Trans 31(Pt 6): 1476-1478. 



www.manaraa.com

94 
 

Steuer, R., J. Kurths, et al. (2003). "Observing and interpreting correlations in 
metabolomic networks." Bioinformatics 19(8): 1019-1026. 

Svetnik, V., A. Liaw, et al. (2003). "Random forest: a classification and regression tool 
for compound classification and QSAR modeling." J Chem Inf Comput Sci 43(6): 
1947-1958. 

Ullah, H., J. G. Chen, et al. (2003). "The beta-subunit of the Arabidopsis G protein 
negatively regulates auxin-induced cell division and affects multiple 
developmental processes." Plant Cell 15(2): 393-409. 

van den Berg, R. A., H. C. Hoefsloot, et al. (2006). "Centering, scaling, and 
transformations: improving the biological information content of metabolomics 
data." BMC Genomics 7: 142. 

Van der Werf, P., M. Orlowski, et al. (1971). "Enzymatic conversion of 5-oxo-L-proline 
(L-pyrrolidone carboxylate) to L-glutamate coupled with cleavage of adenosine 
triphosphate to adenosine diphosphate, a reaction in the -glutamyl cycle." Proc 
Natl Acad Sci U S A 68(12): 2982-2985. 

Zhang, P., H. Foerster, et al. (2005). "MetaCyc and AraCyc. Metabolic pathway 
databases for plant research." Plant Physiol 138(1): 27-37. 

 

 

 

  



www.manaraa.com

95 
 

CHAPTER 6. PARTIAL CORRELATION NETWORKS TO PUTATIVELY 

INDENTIFY UNKNOWN METABOLITES IN NON-TARGETED 

METABOLOMICS 

A paper to be submitted to Plant Methods 

Preeti Bais, Basil Nikolau, Julie A. Dickerson 

Abstract: 

About a third of the total number of the genes in Arabidopsis cannot be functionally annotated 

using sequence genomics techniques alone. Comparing the biochemical signature of samples 

from single gene knock outs with the wild type samples can provide clues to the functions of that 

gene. We individually compared 70  single gene knock outs of Arabidopsis mutants with wild 

type samples to find the potential biomarkers of each mutant.  The data was measured using 

non targeted gas chromatography mass spectrometry (GC-TOF) platform to get a global 

coverage of metabolite families. The Random Forest machine learning algorithm was used for 

classification of mutant samples from the wild type samples and selection of potential 

biomarkers for each mutant.   

Structurally unknown metabolites comprise of a big portion of any larger scale non-targeted 

metabolomics analysis. These metabolites do not provide any biological information unless the 

structures are determined using expensive and time consuming methods like tandem mass 

spectrometry or NMR. We propose a new method of computationally determining the putative 

identification of structurally unknown metabolites using partial correlation networks across many 

genetic strains. A researcher can use our biomarker database to find the potential biomarkers of 

a gene (mutant) of interest, get putative identifications of all unknown metabolites, visualize the 

impacted pathways and find other mutants that have similar biomarker profiles. They can also 
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use integrated data mining tools to see the mutant’s behavior using targeted platforms from our 

plantmetabolomics database for a more detailed analysis of the function of the gene along with 

the integrated morphological data to see the physical changes in plants and seeds.  

Introduction 

Metabolomics, which measures the concentration of small molecules (molecular weight < 1000 

Da) can be used in finding the functions of genes when sequence genomics techniques alone 

are not adequate. Non-targeted metabolomics analysis performs a global analysis of all the 

metabolites in an organism without any previous knowledge on the chemical and physical 

properties of the metabolites.  In a targeted metabolomics, small subset of known metabolites is 

enriched prior to the analysis increasing  the sensitivity of analysis. Since the non-targeted 

analysis is de novo in nature, there is large number of detected metabolites where chemical and 

physical properties cannot be determined without using more expensive and time consuming 

methods like NMR or tandem mass spectrometry. These metabolites cannot be used in finding 

the biological relevance of the factor under study without the structure determination. 

We propose a new method of putatively identifying the key unknown metabolites using partial 

correlation analysis across a large number of genetic strains. Unlike transcriptomic and 

proteomic correlation analysis, the observation of correlations in metabolites from the previous 

studies has not been able to identify known biochemical topologies using the standard 

correlation analysis with Pearson’s and Spearman’s correlations. Previous studies (Camacho et 

al. 2005, Steur R. 2006) have suggested various factors that contribute to the high correlations 

including (1) chemical equilibrium where metabolites reaching equilibrium show high positive 

correlations, (2) mass conservation – in a moiety conserved cycle at least one metabolite is 

negatively correlated to the rest of the group, (3) asymmetric control distribution – where 

intrinsic fluctuations a parameter that controls two metabolites causes high correlations among 

the metabolites (e.g. diurnal cycle) , and (4) unusually high variance in the expression of a 
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single gene. For example, a single enzyme that carries a high variance induces negative 

correlations between its substrate and product metabolites. A review by Steuer R. (Steuer R. 

2006) pointed out several issues with the previous correlation studies including the use a 

predefined correlation threshold and tendency of the nodes that have a common neighbor to be 

identified as connected in a Pearson’s correlation analysis. The author suggested using a partial 

correlation analysis on larger dataset across different genetic strains (or experimental 

conditions) to systematically identify the preserved correlations and thus detect the stable 

features or topologies of the underlying biochemical system. 

In a recent study on lipid metabolomics (Krumsiek J. et al. 2011), the authors have shown that 

partial correlation networks are similar to the actual biochemical while zero order person’s 

correlation networks are not. However, high order correlation networks have not been applied 

as often in metabolomics studies before because the number of features is much higher than 

the number of samples. In the present study, we took advantage of our in house data set which 

was generated using 194 structurally known metabolites across 503 samples. Using only the 

known metabolite, we generated first order correlation network algorithm GGM and show that 

the resulting networks are much sparser and match the actual biochemical pathways very well 

as the indirect correlations are removed. After showing that the highly correlated compounds 

from the partial correlation analysis are also neighbors in the actual biochemical networks, we 

use this strategy to find the neighbors of unknown metabolites .If those neighbor metabolites 

have known structures, we hypothesize that the unknown metabolite may belong to the same 

biochemical pathways as the known metabolites to have survived their correlations across so 

many mutations. This hypothesis can be verified with manually checking the raw 

chromatograms with our links to the GC-TOF library Binbase (Fiehn O. 2004). This method thus 

provides putative identifications of key unknown metabolites with the existing data and without 

the need for more expensive and time consuming methods.    
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Materials and methods 

Plant Materials  
Genetic parameters were manipulated by using Arabidopsis stocks that contained T-DNA 

insertions in a single gene and the environmental parameters were kept constant (Bais P. et al. 

2010). A total 0f 70 different gene mutants (six samples of each mutant) were compared with six 

different sets of wild type plants (with 6 samples in each set). The list of mutants is shown in 

table 6.1.  

Non targeted GC-TOF analysis  
The metabolites were detected using gas chromatography-mass spectrometry (GC-MS) 

platform and a total of 614 metabolites were detected for each genotype. 194 metabolites were 

structurally known and the rest were unknown metabolites. All the metadata about the Plant 

growth conditions, extraction protocols, mass spectrometry, instruments are available along with 

the data at the www.plantmetabolomics.org (Bais et al. 2010).  The total number of samples in 

the dataset was 503.    

Data Analysis 

Data Normalization 
 In a biological system, most of the metabolites are found in low abundance and only a small 

number of metabolites are in high abundance. Mean centering and range scaling methods were 

used to normalize metabolomics data. Range scaling uses biological range as the scaling factor 

(Dieterle et al. 2006, van den Berg et al. 2006).  

 

Random Forest Classification 
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Random Forest (RF) machine learning method  (Breiman 2001) has been used in 

transcriptomics and metabolomics studies for classification and biomarker discovery in recent 

years as it performs well when the number of samples are much lower than the number of 

features (Enot, 2006, Diaz-Uriate 2007). The selected features are not transformed as in PCA 

analysis and can be used directly in the biological interpretation and hypothesis generation. One 

of the main goals of a biomarker study is to find biomarkers that are not only able to separate 

the two classes of samples under study clearly but is  also reproducible. 25 bootstrap runs using 

.632+ bootstrap method (Efron B. et al. 1997) were used in classification procedure to generate 

reproducible results. A base line significance of the models was generated using six sets of wild 

type samples (with six replicates in each set) with each other and then comparing the wild type 

samples across the batches. Previous studies on RF (Enot D. et al. 2006) have suggested using 

class margins as criteria for accessing model quality along with the normally used classification 

accuracy measure. Bigger margins in class votes show high confidence in the votes for the right 

class and thus clear separation between the classes. Margins were calculated by subtracting 

the votes to the wrong class from the votes to the right class. 

Correlation Network Analysis 
Gaussian graphical models (GGMs), remove the indirect associations by conditioning the 

pairwise correlation among two variables on the correlations with all the other variables. A GGM 

is an undirected graph in which each edge represents the pairwise correlation between two 

variables conditioned against the correlations with all other variables. The GGM networks were 

constructed in a three step process by first constructing the Pearson’s correlation matrix, then 

calculating the partial correlations. Finally false discovery rate calculations were employed to 

remove the insignificant correlations. The metabolites were represented as vertices and the 

non-zero correlations between them were represented as edges in a graph. 
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R package “GeneNet” (Schafer et al. 2005 a, 2005 b) was used in analyzing the graphs in the 

GGM method. Top pairwise correlations were chosen using a q value of 0.05. The network 

analysis was performed using R package igraph (Csardi G. et al. 2006). 

 

 

Results and Discussion 

RF  classification and biomarker selection 
 

RF classification results of the same genotype (e.g. wild type VS. wild type model) had low 

average margins and high bootstrap (.632+) estimate of prediction error as expected because 

the metabolic signatures from the same genotype were expected to be very similar to each 

other under stable environment conditions. The error rate and average margins for the pairwise 

mutant vs. wild type RF classifications are shown in figure 6.1.  This figure helps in finding out 

which mutant cause more biochemical changes and which mutants cause insignificant changes. 

We have recently shown that ggt2 mutant may have low expression levels in leaf tissues and as 

shown in figure 6.1, this mutant’s classification with wild type samples is at par with wild type vs. 

wild type comparisons. Classification results from another mutant BCCP2 show high margins 

and low error rate in prediction and are investigated further.  
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Figure 6-1  RF  classification of 70 mutant lines of Arabidopsis with wild type samples 
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GGM Networks  
In the first round, GGM networks were built using the 194 known metabolites alone from the 70 

mutation lines using 503 samples to show that the correlation networks are similar to actual 

biochemical networks. The top 20 metabolite pairs with highest partial correlations are shown in 

table 6.1. Almost all the highest correlated metabolites are either from the same Aracyc pathway 

or share a common structure which can explain the high correlation coefficient between them. 

For example, mannonic acid NIST and gluconic acid which have similar structure in 

CHEBI database show a high correlation. Similarly, ornithine and N-acetylornithine which 

belong to the same Aracyc pathway “arginine biosynthesis II (acetyl cycle)” also show high 

correlation. 

In the second round of correlation analysis, top biomarkers with unknown structures from the RF 

study described above for the entire 70 mutant vs. wild type classification analyses were picked 

for further investigation. The unknown metabolites that appeared in at least 75% bootstrap runs 

for any of the 70 mutants were selected along with all the 194 known metabolites for the GGM 

analysis because the goal was to find a highly correlated known metabolite for a key unknown 

metabolite.  
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Table 6-1  Top 20 highly correlated compounds from GGM networks 

 

  

# Metabolite 1 Metabolite 2 pcor Comment 
1 GABA phosphoric acid -0.77 

 2 lignoceric acid palatinose 0.74 
 

3 
methionine 
sulfoxide xylonolactone 0.69 

 
4 ornithine N-acetylornithine 0.52 

arginine biosynthesis II 
(acetyl cycle) 

5 xylose arabitol 0.52 Sugar and Sugar Alcohol 
6 melibiose digalacturonic acid 0.51 Sugar and Sugar Acid 
7 malic acid 2-hydroxyglutaric acid 0.49 

 8 stearic acid heptadecanoic acid 0.46 Fatty acid family 
9 GABA oxoproline -0.44 γ-glutamyl cycle : 

10 octadecanol 1-hexadecanol 0.43 Both Alcohol 

11 ornithine citrulline 0.43 
arginine biosynthesis II 
(acetyl cycle) 

12 oxoproline phosphoric acid -0.42 γ-glutamyl cycle : 

13 mannonic acid NIST gluconic acid 0.41 Similar structure in CHEBI 

14 
phosphoethanolami
ne adipic acid -0.41 

 

15 glycine aminomalonic acid 0.40 

aminomalonic acid as an 
intermediate in the 
metabolic change of serine 
to glycine 

16 
phosphoethanolami
ne 3-ureidopropionate 0.39 

 17 pelargonic acid benzoic acid 0.39 Both are carboxylic acids 

18 cis-sinapinic acid cysteine-glycine 0.39 
http://www.ncbi.nlm.nih.gov
/pubmed/20188588 

19 GABA galactose -0.38 
glutamate degradation IV- 
Pyruvate-Glycolysis 

20 
conduritol-beta-
epoxide inositol allo- 0.38 

EC 3.2.1.21 - beta-
glucosidase bound as an 
ester of (+) chiro-inositol to 
aspartic acid 

http://pmn.plantcyc.org/ARA/NEW-IMAGE?type=PATHWAY&object=ARGSYNBSUB-PWY
http://pmn.plantcyc.org/ARA/NEW-IMAGE?type=PATHWAY&object=ARGSYNBSUB-PWY
http://pmn.plantcyc.org/ARA/NEW-IMAGE?type=PATHWAY&object=PWY-4041
http://pmn.plantcyc.org/ARA/NEW-IMAGE?type=PATHWAY&object=ARGSYNBSUB-PWY
http://pmn.plantcyc.org/ARA/NEW-IMAGE?type=PATHWAY&object=ARGSYNBSUB-PWY
http://pmn.plantcyc.org/ARA/NEW-IMAGE?type=PATHWAY&object=PWY-4041
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Table 6-2  RF classification results of SALK_070569 vs. wild type from 25 Bootstrap runs 

Potential 
Biomarker 

Frequency in 
bootstrap 
models 

Up or 
Down in 
Mutant? 

Top 3 Metabolites in 
partial correlation 
network 

Top 3 Similar 
compounds from 
Binbase database  

Other mutants 
with same 
biomarkers 

ribitol 0.84 

Up 

  

SALK_022584C 
SALK_022584C 
SALK_151779C 
SALK_126891C 

ELO 2/4 
SALK_040250 

SALK_062847C 
SALK_110264 

201060 0.28 

Up 

 
erythritol 

glycine 
ribitol 

threitol 
erythritol, ribitol,  

xylitol 563 

 
SALK_022584C 
SALK_022584C 

ELO 2/3/4 
SALK_151779C 
SALK_022971C 

SALK_075185 
ELO 2/3 

SALK_053394 
SALK_040250 
SALK_009522 
SALK_094382 

211896 0.24 

Up glucoheptulose 

 cellobiotol 

SALK_094382 
SALK_110264 

xylitol 0.12 Up   SALK_110264 

arabinose 0.08 

Up 

  

SALK_110264 
SALK_008656 
SALK_008505 
SALK_053394 
SALK_040250 

ornithine 0.08 

Up 

  

SALK_040250 
SALK_021437 

SALK_097354C 
ELO 2/4 

212373 0.08 

Up  
allantoin.5TMS 

arabitol 
cysteine 

octadecanol 
ribitol 

leucrose, 
glycerol-3-galactoside 

ELO 2/4 
SALK_040250 

228911 0.08 

Up arabitol 
N.acetyl.D.hexosamine 

ribonic.acid 

fructose 1 (sorbose 1) 
tagatose 1 

fructose 2 (sorbose 2) 

SALK_040250 

http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-10-15
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-10-15
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-11-18
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-11-22
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-11-9
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-11
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-15
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-5
http://eros.fiehnlab.ucdavis.edu:8080/binbase-compound/bin/show/200514
http://eros.fiehnlab.ucdavis.edu:8080/binbase-compound/bin/show/199436
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-10-15
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-10-15
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-11-10
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-11-18
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-11-19
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-11-6
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-11-7
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-10
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-11
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-16
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-9
http://eros.fiehnlab.ucdavis.edu:8080/binbase-compound/bin/show/200508
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-9
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-5
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-5
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-5
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-11-12
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-11-13
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-10
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-11
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-11
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-10-5
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-11-17
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-11-9
http://eros.fiehnlab.ucdavis.edu:8080/binbase-compound/bin/show/202085
http://eros.fiehnlab.ucdavis.edu:8080/binbase-compound/bin/show/200401
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-11-9
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-11
http://eros.fiehnlab.ucdavis.edu:8080/binbase-compound/bin/show/330087
http://eros.fiehnlab.ucdavis.edu:8080/binbase-compound/bin/show/325185
http://eros.fiehnlab.ucdavis.edu:8080/binbase-compound/bin/show/335365
http://plantmetabolomics.vrac.iastate.edu/ver2/view/GenePlot.php?SampleID=S-12-11
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Case Study and examples 
A mutant SALK_070569 (biotin carboxyl-carrier protein ,BCCP2, cac1b-2 allele) has been 

shown to have no perceptible effect on plant growth, development, and fatty acid accumulation 

using morphological data and reverse genetic approaches in a recent study (Xu L et al. 2011). 

Our analysis  for this mutant showed high class margins and low error rates as shown on top left 

portion of figure 6.1 (Point # 4). The potential biomarkers of this mutant did not contain any fatty 

acids or lipids confirming the literature evidence (Xu L et al. 2011). Table 6.2 shows the 

biomarker results for this mutant along with the top correlated compounds from the partial 

correlation analysis for the unknown metabolites.  The results from table 6.2 show that the 

alcohols or the unknown compounds that are highly correlated with alcohols may be potential 

biomarkers for this mutation. The chromatogram analysis from Binbase database provides 

further evidence that the unknown metabolites may be alcohols and not fatty acids. The partial 

correlation analysis provides putative identification for the unknown compounds which match 

the observations from Binbase database.  

The right most column of this table shows other mutants with similar potential biomarkers. An 

examination of the list shows that BCCP2 shares 4 biomarkers with mutant SALK_110264, 

which is  homomeric acetyl-CoA carboxylase gene (ACC2) as per the literature evidence 

(Babiychuk E. et al. 2011). This information is relevant because both the studies point out 

functional redundancy in malonyl-CoA biosynthesis with these two mutants which are also 

supported by our results. The bottom half of the page shows all the affected Aracyc pathways 

for BCCP2 and includes many amino acid biosynthesis pathways. 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Babiychuk%20E%22%5BAuthor%5D
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Conclusions 

We have created a database of metabolomics based potential biomarkers for 70 mutants in 

Arabidopsis that have not been annotated using sequence genomics techniques till date. We 

have also shown that the most correlated pairs of metabolites from the GGM analysis are either 

part of the same pathway or share structure similarity among each other and propose a new 

way to utilize this knowledge for annotating the unknown metabolites. A researcher can use the 

biomarker database to find the potential biomarkers for a gene of interest. They can then find 

putative identifications for the unknown metabolites in the biomarker list. All the other mutants 

that share those biomarkers are also made available along with the potentially impacted 

pathways that may be affected with the known metabolites and the using the putative 

identification of the unknown metabolites from the biomarkers list.  Combining these analyses 

will help the users in finding the biological impact of a mutation and thus lead to hypothesis 

generation about the function of a gene. The users can also use the integrated morphological 

database to see the morphological changes in the plants and use data mining tools at the 

integrated plantmetabolomics database ( www.plantmetabolomics.org) to analyze data from  

other targeted platforms like fatty acid, lipidomics, phytoesterols, isoprenoids , and cuticular wax 

from our consortium to further analyze the impact of the mutants. Detailed instructions and a 

case study with  step by step process on using this tool and database is provided at the 

supplimentary document 8.6. 

Availability of database 

The biomarker database is integrated with our existing plant metabolomics database at www. 

Plantmetabolomics.org. A user can search for a mutant (or gene) from the home page and then 

follow the easy directions to see the biomarker models for the give mutant. A detailed use case 

is also provided in the Appendix – Supplementary Documents 8.6. 

http://www.plantmetabolomics.org/
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CHAPTER 7. CONCLUSIONS 

We have shown that metabolomics can be a very effective functional genomics tool. The 

database contains metabolomics concentration and morphological data from 140 novel 

Arabidopsis mutant lines and 1400 metabolites. A researcher interested in any of these mutant 

lines or metabolites can easily use our web based tools to visualize and perform data mining 

and generate lists of biomarkers or find if two or more genes have similar metabolic profiles and 

thus form hypothesis about the functions of those genes. They can also investigate which family 

of metabolites are affected most or not affected at all due to a mutation and concentrate their 

future efforts accordingly.  

 One of the biggest challenges in any metabolomics experiments is to incorporate structurally  

unknown metabolites and it is often very expensive to find the structures of all the unknown 

metabolites using NMR and other techniques. In this thesis, we have presented a novel way to 

incorporate more information from the unknown metabolites by using novel computational 

methods on the existing data. These methods not only prioritize the unknown metabolites for the 

future structure determination studies but also provide more insight into their possible 

structures.   

We show that our methods not only confirm the known biology on GSH degradation pathway 

from Arabidopsis but this pathway in plants may be different than mammals which can be 

investigated further. Finally we present correlation networks of Arabidopsis that are built across 

70 different mutant lines and show stable relationships between the metabolites from non-

targeted GC-TOF platform. Many of the strong relationships from our analysis match very well 

with the known biochemistry and the some of the novel findings from our analysis can be 

investigated further to see if the strong relationships can guide us to novel pathways between 

those metabolites. 
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We have presented a web based relational database that can be easily adapted to mass 

spectrometry (MS) based plant metabolomics data from other plant species. 

In summary, we hope that this work can provide the research community with new tools to 

incorporate more knowledge from mass spectrometry based metabolomics and help establish 

metabolomics as a functional genomics tool. 
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CHAPTER 8. APPENDIX  – SUPPLEMENTARY DOCUMENTS 

Supplementary Document 8.1:  Data Quality analysis 

Replicate analysis for GC-TOF-MS Data for oxp1 Mutant 

This figure is used in replicate reliability analysis of an experiment. The bottom left corner of the 

figure shows the scatterplot matrix for different replicates. For an experiment with n replicates, n 

of these scatter plots will be drawn. Scatterplot on the ith row and the jth column corresponds to 

the replicates i and j. Each point in a scatterplot depicts a metabolite and its x and y coordinates 

are based on its concentration under two corresponding replicates. The experiments which have 

most of the points around the central diagonal in scatter plot are considered to be good because 

it shows that the experiment had similar results in all the runs. The numbers in the upper right 

corner show Spearman's correlation between two replicates. High numbers in this area indicate 

higher correlation between the replicates and thus high reliability between the replicates. The 

central figures show the distribution of metabolic concentrations in a replicate. Bell shaped 

figures depict that the metabolite concentrations are normally distributed and are considered to 

be good. 
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Figure 8-1 Replicate quality analysis   
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Table 8-1 Summary of Replicate quality analysis of platforms  

 

Analytical 
Platform 

Spearman's Correlation Range 

 oxp1 WT1 WT2 ggt1 ggt2 WT1 WT2 
Fatty Acids 

52 - 85 

57-91 23-85 71-90 69-91 58-87 53-
94 

Cuticle Wax 61-79 
56-86 57-85 41-90 72-88 62-89 52-

83 

Phytosterols 90-98* 
89-98* 70-98* 38-94** 23-99** 22-99** 87-

98** 

Isoprenoids 85-1.00 
71-97 95-100 95-100 93-100 95-100 97-

100 

Lipidomics 94-97 
93-98 93-98 98-99 96-98 98-99 97-

99 

GC-TOF-MS 85-91 
84-94 81-94 86-94 86-91 86-91 86-

93 

UPLC-Q-TOF 85-88 
85-89 84-88 87-91 84-88 87-90 86-

90 
 

Range of Spearman’s correlation between any two replicates of a single genotype for each 

analytical platform. Higher correlation number depicts high repeatability of experiments.  Since 

different sets of WT1 and WT2 samples were used for comparison with the ggt1 and ggt2 than 

for comparison with the oxp1 mutants, we have shown 4 different WT samples here. 

* Metabolite “BML-PS2-14.180-472.5” was removed before the analysis because it had two 

negative values. 

** 3 metabolites namely “BML-PS2-16.643-407.4”, “BML-PS2-14.180-472.5” and “phytol” from 

the Phytosterols platform were removed because some of the data contained negative values. 

 

Note: Phytosterol platform had some metabolites with negative abundance values because the 

intensity of a signature ion was lower in a sample than in the corresponding blank run and since 
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the platform protocol required  subtracting the background at any given retention time and any 

given signature ion from the corresponding value of the sample (Personal communication with 

Dr. B. Lange), this resulted in negative values. 
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Supplementary Document 8.2: List Of Genotypes used for Partial 

Correlation Analysis 

Table 8-2 List of Genotypes used for Partial correlation Analysis  

        # Name Genotype 
No. 
of 
Sam
ples 

# Name Genotype 
No. of 
Sample
s 

1 SALK_105
337C  A1g71697 6 36 SALK_009731  At5g16370 6 

2 SALK_021
437  At1g10670 6 37 SALK_074697  At5g19070 6 

3 SALK_011
304C  At1g12880 6 38 SALK_078745  At5g37830 6 

4 SALK_137
479C  At1g17160 6 39 SALK_112932  At5g37930 6 

5 SALK_072
982  At1g34350 6 40 SALK_130472

C  At5g38460 6 

6 SALK_110
264  At1g36180 6 41 SALK_026454  At5g40010 6 

7 SALK_133
954C  At1g49820 6 42 SALK_093747

C  At5g43380 6 

8 SALK_013
989  At1g50460 6 43 SALK_000892  At5g45300 6 

9 SALK_126
003C  At1g60230 6 44 SALK_008505  At5g47720 6 

10 GABI_751
B10  At1g65890 6 45 SALK_078710  At5g51420 6 

11 SALK_092
412  At1g71890 6 46 SALK_064795

C  At5g53580 6 

12 SALK_083
029  At1g75000 6 47 SALK_025686

C  At5g66550 6 

13 SALK_008
656  At1g76130 5 48 SAIL_690_G0

9 At1g03260 6 

14 SALK_044
892  At2g01170 6 49 SALK_040250 At1g07990 6 

15 SALK_121
515C  At2g03510 6 50 SALK_067448 At1g09430 6 

16 SALK_032
878  At2g17650 6 51 SALK_022584

C At1g22430 6 

17 SALK_143
417C  At2g27490 6 52 SALK_067463

C At1g35710 6 

18 SALK_090
658C  At2g35020 6 53 SALK_097354

C At1g58030 6 

19 SALK_022
971C  At2g39670 6 54 SALK_009522 At1g75960 6 

20 SALK_063
167  At2g42560 6 55 ELO 2/4 At3g06470/At1g

75000 6 



www.manaraa.com

117 
 

21 SALK_014
489C  At2g46180 6 56 ELO 2/3/4 

At3g06470/At4g
36830/At1g750
00 

6 

22 SALK_109
405  At3g06470 6 57 ELO 2/3 At3g06470/At4g

36830 6 

23 SALK_003
718  At3g16950 6 58 SALK_062847

C At4g11100 6 

24 SALK_112
040C  At3g19630 6 59 SALK_016312

C At4g14930 6 

25 SALK_062
081C  At3g49310 6 60 SALK_024747

C At4g22890 6 

26 SALK_151
779C  At3g52750 6 61 SALK_094382 At4g25000 6 

27 SALK_000
817  At3g56130 6 62 ELO 3/4 At4g36830/At1g

75000 6 

28 SALK_126
891C  At4g08350 6 63 SALK_130673

C At4g39520 6 

29 SALK_073
183  At4g22880 6 64 SALK_137317 At5g01300 6 

30 SALK_092
408  At4g29540 6 65 SALK_053394 At5g07990 6 

31 SALK_075
185  At4g36830 6 66 SALK_020583 At5g13930 6 

32 SALK_004
694  At4g39640 6 67 SALK_114456

C At5g20080 6 

33 SAIL_6_G0
2  At4g39650 6 68 aae17/8 At5g23050/At1g

55320 6 

34 SALK_090
101C  At5g08120 6 69 SALK_083600

C At5g61790 6 

35 SALK_070
569  At5g15530 6 70 SALK_021108  At1g52670 36 

71 Wild type Col-0 54 
Total 240 Total 263 Grand Total  503 

  Grand Total  503 
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Supplementary Document 8.3: Applications of biomarker database and 

putative identification of unknown metabolites: Case Study 

 

Case study: Find the biomarkers of a mutation of interest 

Scenario: An investigator is interested in how the metabolome changes when comparing mutant 

and wild-type samples for a mutant of interest. Specifically, the investigator wants to know which 

metabolites show a significant change and which biochemical pathways they are involved in.  

The investigator is also interested in obtaining detailed information about specific metabolites 

from other web sources, other metabolites in the relevant biological pathways, and all the 

metadata associated with the selected mutant sample.  

For example, the investigator is interested in the metabolome changes for mutant 

“SALK_053394”, which has a T-DNA mutation in the Arabidopsis gene “At5g099970”.Below is a 

detailed description of a possible analysis path. Please note that analyses do not need to be 

done in this order.  Help icons are located throughout the database to aid users in 

understanding the tools available at PM.   

In the main web page, www.plantmetabolomics.org, the investigator selects the gene of interest 

from a drop down menu and clicks on  “Go” button. The resulting page shows a ratio plot of that 

mutant compared with all the wild type samples from the same experimental batch. The 

investigator can visualize which metabolites have more significant fold changes from the wild 

type. Metabolite names appear by moving the cursor over the plotted points. Missing or below 

detection limit values are depicted by different colored marks on the plot. After the exploratory 

analysis, the investigator can click on the “Biomarker DB” on top of the plot button to see 

potential biomarkers for this mutant which were generated using 25 bootstrap runs of random 

forest algorithm to compare wild type samples with the samples from the mutant of interest.  

http://www.plantmetabolomics.org/
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The resulting page shows the statistics of the analysis along with the other entire mutant vs. wild 

type comparisons in a clickable chart. High margins and low error rate depict that a mutant 

causes significant biochemical changes in the cell. The user is also provided a list of potential 

biomarkers for the queried mutant. The user can click on the metabolite name to see details of a 

metabolite (e.g. structure information, pathway information etc.). The third column on this table 

shows 3 highly correlated metabolites to each metabolite in the first column from the partial 

correlation analysis. For example the first potential biomarker for the given mutant is “201060” 

which is an unknown metabolite. The second column shows that it is highly correlated with 

ribitol. The second column links the metabolite to the Binbase database and shows the 

chromatogram of the queried metabolite along with 10 other metabolites whose chromatograms 

are similar to this compound. Some of the matching compounds include, “xylitol 563” and 

“ribitol”. The investigator can hypothesize that the unknown biomarker is a closely related 

compound to the alcohols from this analysis. The last column shows all the mutants in the 

database that share the biomarkers of the mutant of interest. This information can be used in 

finding if two mutants act in similar ways. Finally , the bottom portion of the page shows all the 

impacted Aracyc pathways with the mutation. All the known metabolites and putative 

identifications for the unknown metabolites are used in getting the pathways. 

The investigator can also use the integrated morphological images to see the physiological 

changes in the plant under the mutation and compare them with the images from the wild type 

samples. The integrated data mining tools can also be used at this time to analyze data from the 

integrated targeted platforms to get a more comprehensive view of the changes occurred due to 

the mutation. The combination of the results from this  database along with the 

plantmetabolomics database and data visualization tools will help in forming hypothesis about 

the functions of genes. 

http://plantmetabolomics.vrac.iastate.edu/ver2/view/MetabolitePlot.php?MetaboliteID=PM_8_136
http://eros.fiehnlab.ucdavis.edu:8080/binbase-compound/bin/show/199436
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